Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
15 May 2023 | Story Leonie Bolleurs | Photo Supplied
Spineless Cactus
Axel Tarrisse (far left), a PhD student in the Department of Sustainable Food Systems, working on the biogas and fodder potential of spineless cactus in Africa. Pictured with him are Prof Maryna de Wit, his supervisor and Associate Professor in the UFS Department of Sustainable Food Systems and Development, and Dr Herman Fouché from the Agricultural Research Council.

The spineless cactus is a unique perennial plant that is able to yield close to 40 tons of dry matter per hectare per year with a rainfall of 500 mm per annum. “This equates eight tons of biomethane or 11 000 litres of diesel-equivalent energy per hectare,” says Axel Tarrisse, a PhD student in the Department of Sustainable Food Systems and Development at the University of the Free State (UFS), who is working on the biogas and fodder potential of spineless cactus in Africa.

Tarrisse believes biogas, produced from the spineless cactus, has the potential to complement the supply of South Africa’s existing industrial energy companies to produce sustainable jet fuel and diesel and a variety of other products with the gas-to-liquid process they use.

Developing biogas

He says with rainfall, key nutrients, carbon dioxide, and solar energy it is possible to produce biomass from cactus.

“First, we harvest the cactus and macerate it prior to going into an anaerobic digester where it is heated to 38°C, the same as a cow’s body temperature. Inside the digester, naturally occurring bacteria, similar to those found in their stomachs, break down the cactus, resulting in the production of biogas. This biogas is composed of both methane and carbon dioxide,” he explains.

According to him, biogas generated through this process can be used in a number of ways. This includes running generators to produce electricity or burning it to generate heat. It will also serve as a feedstock to replace coal and natural gas used by companies such as PetroSA and Sasol in their production of synthetic renewable fuels.

“The methane can also be separated from the carbon dioxide and compressed into bottles, creating compressed biomethane. This can be used as a replacement for liquid petroleum gas (LPG), as well as petrol and diesel in vehicles, such as bakkies, tractors, buses, and delivery trucks.”

The carbon dioxide produced in the process can, for example, be used to replace the fossil-based carbon dioxide typically used in the production of carbonated beverages. Additionally, it can be applied to extend the shelf life of packaged foods, serve as a water softener, and even be applied to a variety of industrial applications.

Commercialisation 

Biogas/biomethane is already produced in Mexico on a commercial scale. In Northeast Brazil, farmers have planted 600 000 hectares of spineless cactus, also known as Palma Forrageira, but the machinery needed to harvest it only became commercially available this year.

Back home in South Africa, just 30 km outside of Bloemfontein, Barren Energy farm is at Stage 1 with 140 hectares of high-density cactus planted to provide the initial feedstock for anaerobic digestion. With 600 hectares, they will be able to produce five million litres of diesel-equivalent methane.

Tarrisse says, “With the right methodology and management system, producing biogas from the spineless cactus will be adopted relatively quickly on a commercial scale.”

He believes that the lack of investment in cultivating the spineless cactus as a crop for fodder in South Africa may be due to a few factors. “It is easier to stick to what is known, such as irrigating lucerne and maize and managing these crops with existing planters, pest management solutions, and harvesting machinery than to develop local machinery and management solutions for a perfectly adapted crop,” he says. 

Compelling reasons

According to Tarrisse, there are several compelling reasons to consider the spineless cactus as a source of biogas in South Africa.

Firstly, he explains, “Only the cactus pads, harvested from high-density plantations (20 000 plants per hectares), are used for biogas production.”

“Secondly, the spineless cactus can yield large volumes of biomass from marginal semi-arid land where conditions are unsuitable for conventional crop cultivation. This makes it an ideal option for the 65% of South African land that receives less than 500 mm of rainfall annually.”

Thirdly, he says, “The plant contains 30 to 50% of easily digestible sugars, which degrades easily in an anaerobic digester. This simple, low-tech process can provide a substantial amount of baseload energy with relatively limited capital expenditure, which is particularly important in developing countries such as South Africa where capital is difficult to raise.”

“On top of that, anaerobic digestion only extracts carbon, oxygen, and hydrogen molecules from the cactus, while most of the macro- and micronutrients, water, and some fibres remain in the digestate. This nutrient-rich cactus digestate can then be spread on the cactus fields, reducing the need for fertiliser once the plantation has been fertilised in the first two years of implementation.”

Societal impact

Besides the benefits of producing biogas from the cactus plant, there is also the opportunity of job creation. “This farming can create one million direct job opportunities from only 3% of South Africa’s land area, approximately 4 million hectares,” says Tarrisse.

He is of the opinion that if production was at scale, as opposed to the current small orchard-style farming of cactus, there would be substantial biomass available to sustain not only biomethane, but also to support various bio-industries, such as protein production through cactus fermentation, biomaterials as a substitute for wood-based cellulose, organic acids, and bioplastics. “Consequently, cactus provides a climate-resilient, drought-resistant, and perennial feedstock for food, feed, fibre, and fuel in semi-arid Southern Africa,” he says.

Tarrisse states that this initiative also has the potential to significantly reduce migration from rural to urban areas, therefore addressing issues related to the growth of urbanisation, such as the provision of infrastructure and crime.

News Archive

Staff, students, learners and the public opened their hearts during R5 coin-laying ceremony
2012-07-17

Photo:  Sonia Small
18 July 2012

Amidst a festive atmosphere on the Red Square in front of the Main Building on the Bloemfontein Campus of the University of the Free State (UFS), students, staff, learners and members of the public came together to make their contribution to stop hunger.

In celebration of former president Nelson Mandela’s birthday, the university collected money and food in the form of a coin-laying ceremony, the packing of food parcels, and a message delivered by Emeritus Archbishop Desmond Tutu in aid of the university’s No Student Hungry (NSH) campaign and Bloemfontein Child Welfare.

Representatives from schools in Bloemfontein donated their R5 coins, together with university staff, students, members of the public, and employees of Pick n Pay Hyper. Money collected at the coin-laying ceremony will be shared between NSH and Bloemfontein Child Welfare.

According to Ms Grace Jansen and Ms Carin Buys, patrons of NSH, the more than R42 000 that was collected will be donated to Bloemfontein Child Welfare in an effort by NSH to give back to the community. “We are impressed by the number of people who showed up and by the fact that people opened their hearts and pockets to give,” said Ms Buys.

Thirty employees of Pick n Pay Hyper in Bloemfontein were also present and packed 1 833 food parcels (equivalent to 11 000 meals). This forms part of a Pick n Pay initiative in cooperation with Stop Hunger Now that is being held countrywide today.

In total, 88 000 meals will be distributed in six cities in South Africa today. The 11 000 meals in the Free State have been donated to the university and according to Ms Jansen a social worker at the UFS will distribute it to other needy students. These are students who do not receive bursaries from NSH at the moment. Every food parcel contains rice, dried vegetables, soya, and vitamin and mineral enriched powder.

The university was honoured to have Emeritus Archbishop Desmond Tutu as the speaker at the event. He attended a dialogue in the Series of Dialogue between Science and Society today at the university where he took part in a conversation with Profs. Mark Solms and Pumla Gobodo-Madikizela as part of the Global Leadership Summit.

He made a special appearance at the university’s Nelson Mandela Day festivities. His message was simple but inspiring: “Everyone has, just like Madiba, the capacity to change lives. I hope there are people present who can say that they want to improve someone else’s life. You have the chance to make South Africa a country where no one goes to bed hungry. Help us to make South Africa a country where we have compassion for each other and care for each other”.

The UFS would like to thank the following schools for their contributions: 

Grey Kollege Primêre Skool
Grey Kollege
St Michael's School for Girls
Hoërskool Jim Fouché
Hoërskool Fichardtpark
Hoërskool Sentraal
Navalsig High School
HTS Louis Botha
Eunice High School 


 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept