Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
15 May 2023 | Story Leonie Bolleurs | Photo Supplied
Spineless Cactus
Axel Tarrisse (far left), a PhD student in the Department of Sustainable Food Systems, working on the biogas and fodder potential of spineless cactus in Africa. Pictured with him are Prof Maryna de Wit, his supervisor and Associate Professor in the UFS Department of Sustainable Food Systems and Development, and Dr Herman Fouché from the Agricultural Research Council.

The spineless cactus is a unique perennial plant that is able to yield close to 40 tons of dry matter per hectare per year with a rainfall of 500 mm per annum. “This equates eight tons of biomethane or 11 000 litres of diesel-equivalent energy per hectare,” says Axel Tarrisse, a PhD student in the Department of Sustainable Food Systems and Development at the University of the Free State (UFS), who is working on the biogas and fodder potential of spineless cactus in Africa.

Tarrisse believes biogas, produced from the spineless cactus, has the potential to complement the supply of South Africa’s existing industrial energy companies to produce sustainable jet fuel and diesel and a variety of other products with the gas-to-liquid process they use.

Developing biogas

He says with rainfall, key nutrients, carbon dioxide, and solar energy it is possible to produce biomass from cactus.

“First, we harvest the cactus and macerate it prior to going into an anaerobic digester where it is heated to 38°C, the same as a cow’s body temperature. Inside the digester, naturally occurring bacteria, similar to those found in their stomachs, break down the cactus, resulting in the production of biogas. This biogas is composed of both methane and carbon dioxide,” he explains.

According to him, biogas generated through this process can be used in a number of ways. This includes running generators to produce electricity or burning it to generate heat. It will also serve as a feedstock to replace coal and natural gas used by companies such as PetroSA and Sasol in their production of synthetic renewable fuels.

“The methane can also be separated from the carbon dioxide and compressed into bottles, creating compressed biomethane. This can be used as a replacement for liquid petroleum gas (LPG), as well as petrol and diesel in vehicles, such as bakkies, tractors, buses, and delivery trucks.”

The carbon dioxide produced in the process can, for example, be used to replace the fossil-based carbon dioxide typically used in the production of carbonated beverages. Additionally, it can be applied to extend the shelf life of packaged foods, serve as a water softener, and even be applied to a variety of industrial applications.

Commercialisation 

Biogas/biomethane is already produced in Mexico on a commercial scale. In Northeast Brazil, farmers have planted 600 000 hectares of spineless cactus, also known as Palma Forrageira, but the machinery needed to harvest it only became commercially available this year.

Back home in South Africa, just 30 km outside of Bloemfontein, Barren Energy farm is at Stage 1 with 140 hectares of high-density cactus planted to provide the initial feedstock for anaerobic digestion. With 600 hectares, they will be able to produce five million litres of diesel-equivalent methane.

Tarrisse says, “With the right methodology and management system, producing biogas from the spineless cactus will be adopted relatively quickly on a commercial scale.”

He believes that the lack of investment in cultivating the spineless cactus as a crop for fodder in South Africa may be due to a few factors. “It is easier to stick to what is known, such as irrigating lucerne and maize and managing these crops with existing planters, pest management solutions, and harvesting machinery than to develop local machinery and management solutions for a perfectly adapted crop,” he says. 

Compelling reasons

According to Tarrisse, there are several compelling reasons to consider the spineless cactus as a source of biogas in South Africa.

Firstly, he explains, “Only the cactus pads, harvested from high-density plantations (20 000 plants per hectares), are used for biogas production.”

“Secondly, the spineless cactus can yield large volumes of biomass from marginal semi-arid land where conditions are unsuitable for conventional crop cultivation. This makes it an ideal option for the 65% of South African land that receives less than 500 mm of rainfall annually.”

Thirdly, he says, “The plant contains 30 to 50% of easily digestible sugars, which degrades easily in an anaerobic digester. This simple, low-tech process can provide a substantial amount of baseload energy with relatively limited capital expenditure, which is particularly important in developing countries such as South Africa where capital is difficult to raise.”

“On top of that, anaerobic digestion only extracts carbon, oxygen, and hydrogen molecules from the cactus, while most of the macro- and micronutrients, water, and some fibres remain in the digestate. This nutrient-rich cactus digestate can then be spread on the cactus fields, reducing the need for fertiliser once the plantation has been fertilised in the first two years of implementation.”

Societal impact

Besides the benefits of producing biogas from the cactus plant, there is also the opportunity of job creation. “This farming can create one million direct job opportunities from only 3% of South Africa’s land area, approximately 4 million hectares,” says Tarrisse.

He is of the opinion that if production was at scale, as opposed to the current small orchard-style farming of cactus, there would be substantial biomass available to sustain not only biomethane, but also to support various bio-industries, such as protein production through cactus fermentation, biomaterials as a substitute for wood-based cellulose, organic acids, and bioplastics. “Consequently, cactus provides a climate-resilient, drought-resistant, and perennial feedstock for food, feed, fibre, and fuel in semi-arid Southern Africa,” he says.

Tarrisse states that this initiative also has the potential to significantly reduce migration from rural to urban areas, therefore addressing issues related to the growth of urbanisation, such as the provision of infrastructure and crime.

News Archive

Research on cactus pear grabs attention of food, cosmetic and medical industry
2015-02-18

Cactus pear
Photo: Charl Devenish

The dedicated research and development programme at the UFS on spineless cactus pear (Opuntia ficus-indica) – also known as prickly pear – has grown steadily in both vision and dimension during the past 15 years. Formal cactus pear research at the UFS started with the formation of the Prickly Pear Working Group (PPWG) in June 2002. It has since gone from strength to strength with several MSc dissertations and a PhD thesis as well as popular and scientific publications flowing from this initiative.

According to Prof Wijnand Swart from the Department of Plant Sciences, the UFS is today recognised as a leading institution in the world conducting multi-disciplinary research on spineless cactus pear.

Cactus pear for animal feed

Increasing demands on already scarce water resources in South Africa require alternative sources of animal feed – specifically crops that are more efficient users of water. One alternative with the potential for widespread production is spineless cactus pear. It is 1.14 x more efficient in its use of water than Old man saltbush, 2.8 x more efficient than wheat, 3.75 x more efficient than lucerne and 7.5 x more efficient than rangeland vegetation.

“Studies on the use of sun-dried cactus pear cladodes suggest that it has the potential to provide some 25% of the basic feed resources required by South Africa’s commercial ruminant feed manufacturing sector,” says Prof HO de Waal of the Department of Animal, Wildlife and Grassland Sciences at the UFS.

Until recently, research has focused extensively on the use of cactus pear as drought fodder. However, this is now beginning to shift, with growing interest in the intensive production of spineless cactus pear for other types of animal feed. One example is the spineless cactus pear fruit, produced seasonal, yielding large quantities of fruit in a relatively short period of a few months in summer. Unless kept in cold storage, the fruit cannot be stored for a long period. Therefore, a procedure was developed to combine large volumes of mashed cactus pear fruit with dry hay and straw and preserve it for longer periods as high moisture livestock feed, kuilmoes – a high water content livestock feed similar to silage.

Cactus pear and Pineapple juice
Photo: Charl Devenish

Cactus pear for human consumption

“In addition to its use as a livestock feed, cactus pear is increasingly being cultivated for human consumption. Although the plant can be consumed fresh as a juice or vegetable, significant value can be added through processing. This potential is considerable: the plant can be pickled; preserved as a jam or marmalade; or dried and milled to produce baking flour. It can also serve as a replacement of egg and fat in mayonnaise,” said Dr Maryna de Wit from the Department of Microbial, Biochemical and Food Biotechnology.

The extraction of mucilage from fresh cladodes can form a gelling, emulsifier, and fat-replacing agent commonly found in food products such as mayonnaise and candy. During an information session to the media Dr De Wit and her team conducted a food demonstration to showcase the use of the cladodes in a juice, chicken stir-fry, biscuits and a salad.

The extrusion of cactus pear seed oil provides a further lucrative niche product to the array of uses. These include high-value organic oil for the cosmetic sector, such as soap, hair gel and sun screens.

The cladodes and the fruit also have medicinal uses. It has anti-viral, anti-inflammatory, pain killing and anti-diabetic agents. It is also high in fibre and can lower cholesterol. The fruit also prevents proliferation of cells and suppresses tumour growth and can even help to reduce a hangover.

In South Africa the outdated perception of cactus pears as thorny, alien invaders, is rapidly disappearing. Instead, farmers now recognise that cactus pear can play a vital role as a high yielding, water-efficient, multi-use crop, said Prof de Waal and the members of the Cactus Pear Team.

Facebook photo gallery
Dagbreek interview with Dr Maryna de Wit  

Research on cactus pear (read the full story)

For more information or enquiries contact news@ufs.ac.za

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept