Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
15 May 2023 | Story Leonie Bolleurs | Photo Supplied
Spineless Cactus
Axel Tarrisse (far left), a PhD student in the Department of Sustainable Food Systems, working on the biogas and fodder potential of spineless cactus in Africa. Pictured with him are Prof Maryna de Wit, his supervisor and Associate Professor in the UFS Department of Sustainable Food Systems and Development, and Dr Herman Fouché from the Agricultural Research Council.

The spineless cactus is a unique perennial plant that is able to yield close to 40 tons of dry matter per hectare per year with a rainfall of 500 mm per annum. “This equates eight tons of biomethane or 11 000 litres of diesel-equivalent energy per hectare,” says Axel Tarrisse, a PhD student in the Department of Sustainable Food Systems and Development at the University of the Free State (UFS), who is working on the biogas and fodder potential of spineless cactus in Africa.

Tarrisse believes biogas, produced from the spineless cactus, has the potential to complement the supply of South Africa’s existing industrial energy companies to produce sustainable jet fuel and diesel and a variety of other products with the gas-to-liquid process they use.

Developing biogas

He says with rainfall, key nutrients, carbon dioxide, and solar energy it is possible to produce biomass from cactus.

“First, we harvest the cactus and macerate it prior to going into an anaerobic digester where it is heated to 38°C, the same as a cow’s body temperature. Inside the digester, naturally occurring bacteria, similar to those found in their stomachs, break down the cactus, resulting in the production of biogas. This biogas is composed of both methane and carbon dioxide,” he explains.

According to him, biogas generated through this process can be used in a number of ways. This includes running generators to produce electricity or burning it to generate heat. It will also serve as a feedstock to replace coal and natural gas used by companies such as PetroSA and Sasol in their production of synthetic renewable fuels.

“The methane can also be separated from the carbon dioxide and compressed into bottles, creating compressed biomethane. This can be used as a replacement for liquid petroleum gas (LPG), as well as petrol and diesel in vehicles, such as bakkies, tractors, buses, and delivery trucks.”

The carbon dioxide produced in the process can, for example, be used to replace the fossil-based carbon dioxide typically used in the production of carbonated beverages. Additionally, it can be applied to extend the shelf life of packaged foods, serve as a water softener, and even be applied to a variety of industrial applications.

Commercialisation 

Biogas/biomethane is already produced in Mexico on a commercial scale. In Northeast Brazil, farmers have planted 600 000 hectares of spineless cactus, also known as Palma Forrageira, but the machinery needed to harvest it only became commercially available this year.

Back home in South Africa, just 30 km outside of Bloemfontein, Barren Energy farm is at Stage 1 with 140 hectares of high-density cactus planted to provide the initial feedstock for anaerobic digestion. With 600 hectares, they will be able to produce five million litres of diesel-equivalent methane.

Tarrisse says, “With the right methodology and management system, producing biogas from the spineless cactus will be adopted relatively quickly on a commercial scale.”

He believes that the lack of investment in cultivating the spineless cactus as a crop for fodder in South Africa may be due to a few factors. “It is easier to stick to what is known, such as irrigating lucerne and maize and managing these crops with existing planters, pest management solutions, and harvesting machinery than to develop local machinery and management solutions for a perfectly adapted crop,” he says. 

Compelling reasons

According to Tarrisse, there are several compelling reasons to consider the spineless cactus as a source of biogas in South Africa.

Firstly, he explains, “Only the cactus pads, harvested from high-density plantations (20 000 plants per hectares), are used for biogas production.”

“Secondly, the spineless cactus can yield large volumes of biomass from marginal semi-arid land where conditions are unsuitable for conventional crop cultivation. This makes it an ideal option for the 65% of South African land that receives less than 500 mm of rainfall annually.”

Thirdly, he says, “The plant contains 30 to 50% of easily digestible sugars, which degrades easily in an anaerobic digester. This simple, low-tech process can provide a substantial amount of baseload energy with relatively limited capital expenditure, which is particularly important in developing countries such as South Africa where capital is difficult to raise.”

“On top of that, anaerobic digestion only extracts carbon, oxygen, and hydrogen molecules from the cactus, while most of the macro- and micronutrients, water, and some fibres remain in the digestate. This nutrient-rich cactus digestate can then be spread on the cactus fields, reducing the need for fertiliser once the plantation has been fertilised in the first two years of implementation.”

Societal impact

Besides the benefits of producing biogas from the cactus plant, there is also the opportunity of job creation. “This farming can create one million direct job opportunities from only 3% of South Africa’s land area, approximately 4 million hectares,” says Tarrisse.

He is of the opinion that if production was at scale, as opposed to the current small orchard-style farming of cactus, there would be substantial biomass available to sustain not only biomethane, but also to support various bio-industries, such as protein production through cactus fermentation, biomaterials as a substitute for wood-based cellulose, organic acids, and bioplastics. “Consequently, cactus provides a climate-resilient, drought-resistant, and perennial feedstock for food, feed, fibre, and fuel in semi-arid Southern Africa,” he says.

Tarrisse states that this initiative also has the potential to significantly reduce migration from rural to urban areas, therefore addressing issues related to the growth of urbanisation, such as the provision of infrastructure and crime.

News Archive

Kovsies included in national team for 2015 World Cup in Australia
2015-06-30

Karla Mostert
Photo: Johan Roux

The success of netballers Adele Niemand (former Kovsie) and Karla Mostert (captain of the Kovsie netball team) continues - they represent Kovsies, the provincial Crinums, as well as the national SPAR Proteas as goal-keeper and goal defender, respectively. The UFS is also very proud of their inclusion in the national team for the upcoming 2015 World Cup in Australia.
 
On 6 June 2015, Niemand and Mostert played for the Free State Crinums, who overpowered the Gauteng Jaguars in the Brutal Fruit Netball Premier League (NPL). This win secured the championship title for the Crinums for the second time in a row.
 
“Our aim was to improve with each game. We did this throughout the league. The final game against the Jaguars was definitely our best game, so we are very satisfied. The NPL prepared us and gave us game time, which I think, is great preparation for the Diamond Challenge,” said Mostert.
 
Niemand and Mostert represented South Africa at the Diamond Challenge in Margate from 14 to 18 June 2015.
 
Prior to the event, Burta de Kock, Head Coach of the university’s team, said, “The Diamond Challenge in Margate will be hard, because Zambia, Uganda and Malawi want to be the best in Africa. But SA has enough brilliant players to do the trick for us, and we also have a great leader as captain.”
 
Niemand and Mostert form part of the national squad selected for the upcoming 2015 World Cup in Australia. Kovsie Lauren-Lee Christians from the UFS is the only non-travelling substitute for the World Cup. In their group, the team will compete from 7 to 16 August 2015 against Malawi, Singapore and Sri Lanka.
 
For the upcoming games against the world’s best in Sydney, Niemand has set a personal goal, namely to be the best by playing every game as if it's her last, and in so doing, aims to maintain the high standard of the team.
 
Their coach’s words of encouragement for the World Cup are: “Just go out with passion and enjoy every second. Never forget you are our CHAMPS!!”
 
The SPAR Proteas have indeed proven to be champions by beating Zambië 63 - 38 in the opening match of the challenge on 16 June 2015 at the UGU Sports Centre. They continued to beat Malawi convincingly by 43 - 33, and thrashed Uganda with a score of 56 - 39 to maintain their unbeaten run. The Proteas managed to uphold their lead to the end and thereby secured the tournament trophy win a win of 40 - 35.  In the first two games against Zambia and Malawi, Mostert and Niemand was respectively Player of the Match.
 
The UFS is also proud of Maryka Holtzhausen, a former Kovsie now captaining the Proteas. Ilze du Pisanie, also a former Kovsie, is the conditioning coach for the Proteas.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept