Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
15 May 2023 | Story Leonie Bolleurs | Photo Supplied
Spineless Cactus
Axel Tarrisse (far left), a PhD student in the Department of Sustainable Food Systems, working on the biogas and fodder potential of spineless cactus in Africa. Pictured with him are Prof Maryna de Wit, his supervisor and Associate Professor in the UFS Department of Sustainable Food Systems and Development, and Dr Herman Fouché from the Agricultural Research Council.

The spineless cactus is a unique perennial plant that is able to yield close to 40 tons of dry matter per hectare per year with a rainfall of 500 mm per annum. “This equates eight tons of biomethane or 11 000 litres of diesel-equivalent energy per hectare,” says Axel Tarrisse, a PhD student in the Department of Sustainable Food Systems and Development at the University of the Free State (UFS), who is working on the biogas and fodder potential of spineless cactus in Africa.

Tarrisse believes biogas, produced from the spineless cactus, has the potential to complement the supply of South Africa’s existing industrial energy companies to produce sustainable jet fuel and diesel and a variety of other products with the gas-to-liquid process they use.

Developing biogas

He says with rainfall, key nutrients, carbon dioxide, and solar energy it is possible to produce biomass from cactus.

“First, we harvest the cactus and macerate it prior to going into an anaerobic digester where it is heated to 38°C, the same as a cow’s body temperature. Inside the digester, naturally occurring bacteria, similar to those found in their stomachs, break down the cactus, resulting in the production of biogas. This biogas is composed of both methane and carbon dioxide,” he explains.

According to him, biogas generated through this process can be used in a number of ways. This includes running generators to produce electricity or burning it to generate heat. It will also serve as a feedstock to replace coal and natural gas used by companies such as PetroSA and Sasol in their production of synthetic renewable fuels.

“The methane can also be separated from the carbon dioxide and compressed into bottles, creating compressed biomethane. This can be used as a replacement for liquid petroleum gas (LPG), as well as petrol and diesel in vehicles, such as bakkies, tractors, buses, and delivery trucks.”

The carbon dioxide produced in the process can, for example, be used to replace the fossil-based carbon dioxide typically used in the production of carbonated beverages. Additionally, it can be applied to extend the shelf life of packaged foods, serve as a water softener, and even be applied to a variety of industrial applications.

Commercialisation 

Biogas/biomethane is already produced in Mexico on a commercial scale. In Northeast Brazil, farmers have planted 600 000 hectares of spineless cactus, also known as Palma Forrageira, but the machinery needed to harvest it only became commercially available this year.

Back home in South Africa, just 30 km outside of Bloemfontein, Barren Energy farm is at Stage 1 with 140 hectares of high-density cactus planted to provide the initial feedstock for anaerobic digestion. With 600 hectares, they will be able to produce five million litres of diesel-equivalent methane.

Tarrisse says, “With the right methodology and management system, producing biogas from the spineless cactus will be adopted relatively quickly on a commercial scale.”

He believes that the lack of investment in cultivating the spineless cactus as a crop for fodder in South Africa may be due to a few factors. “It is easier to stick to what is known, such as irrigating lucerne and maize and managing these crops with existing planters, pest management solutions, and harvesting machinery than to develop local machinery and management solutions for a perfectly adapted crop,” he says. 

Compelling reasons

According to Tarrisse, there are several compelling reasons to consider the spineless cactus as a source of biogas in South Africa.

Firstly, he explains, “Only the cactus pads, harvested from high-density plantations (20 000 plants per hectares), are used for biogas production.”

“Secondly, the spineless cactus can yield large volumes of biomass from marginal semi-arid land where conditions are unsuitable for conventional crop cultivation. This makes it an ideal option for the 65% of South African land that receives less than 500 mm of rainfall annually.”

Thirdly, he says, “The plant contains 30 to 50% of easily digestible sugars, which degrades easily in an anaerobic digester. This simple, low-tech process can provide a substantial amount of baseload energy with relatively limited capital expenditure, which is particularly important in developing countries such as South Africa where capital is difficult to raise.”

“On top of that, anaerobic digestion only extracts carbon, oxygen, and hydrogen molecules from the cactus, while most of the macro- and micronutrients, water, and some fibres remain in the digestate. This nutrient-rich cactus digestate can then be spread on the cactus fields, reducing the need for fertiliser once the plantation has been fertilised in the first two years of implementation.”

Societal impact

Besides the benefits of producing biogas from the cactus plant, there is also the opportunity of job creation. “This farming can create one million direct job opportunities from only 3% of South Africa’s land area, approximately 4 million hectares,” says Tarrisse.

He is of the opinion that if production was at scale, as opposed to the current small orchard-style farming of cactus, there would be substantial biomass available to sustain not only biomethane, but also to support various bio-industries, such as protein production through cactus fermentation, biomaterials as a substitute for wood-based cellulose, organic acids, and bioplastics. “Consequently, cactus provides a climate-resilient, drought-resistant, and perennial feedstock for food, feed, fibre, and fuel in semi-arid Southern Africa,” he says.

Tarrisse states that this initiative also has the potential to significantly reduce migration from rural to urban areas, therefore addressing issues related to the growth of urbanisation, such as the provision of infrastructure and crime.

News Archive

UFS researchers help find opportunities to create knowledge
2016-09-15

Description: Mobile libraries  Tags: Mobile libraries

The initiative hopes that the mobile libraries
will continue to contribute towards literature
awareness and access to books at rural
schools in the Free State.
Photo: Supplied

Did you know that only 3 392 primary schools in South Africa have libraries? In the Free State the statistics are shocking. Only 277 primary schools have libraries, while 1 087 carry on without them. One of nine provinces in South Africa, the Free State is regarded as a rural province. The South African Primary Education Support Initiative (SAPESI), in partnership with other sponsors, has committed to expanding access to books by donating mobile libraries to service schools across South Africa. In the Free State, the project is embraced by the Free State Department of Education, which employs the mobile operators and library assistants to service these libraries, driving many kilometres of gravel road to visit remote farm schools and other under-resourced schools. SAPESI has set a goal to supply 75 mobile libraries to provide 2 000 schools with access to books by the year 2020.

Discovering the value of the mobile libraries
Although the mobile libraries in the Free State have been functioning since 2007, no formal research had been conducted on their work. Towards the end of 2014, the Free State Department of Education and the Flemish Association for Development Cooperation and Technical Assistance (VVOB) commissioned the UFS to carry out a participatory action research project. Dr Lynette Jacobs, Head of the School of Education Studies at the University of the Free State’s Faculty of Education and her team engaged with role-players at district and provincial level in a Participatory Action Research project.

The research project aimed to describe the work that mobile libraries do, and appraise its influence on learners and schools, towards improving their functionality. In addition, this project aimed to build research capacity within the district teacher development centres.

Highlights of the mobile library project
The way the Free State Department of Education embraced and supported the initiative by Mr Tad Hasunuma and SAPESI, was inspiring. Each of the five education districts has two fully equipped library buses that periodically visit schools. The stock on the buses is regularly replaced by books that SAPESI receives from the international community. Specific books are also loaded for teachers to use as resources. One of the outcomes of the research project was that guidelines were developed for teachers on how to use books in addition to curriculum material in the classroom. At district level, the teams reflected on the work that they were doing and implemented improvement plans to provide an even better service. Findings of the project were presented at the XIV Annual International Conference of the Bulgarian Comparative Education Society that focused on education provision earlier this year. It was lauded by representatives of the international education community as an example of good practice to provide education to marginalised children.

Reading helps enrich children’s lives
The research project concluded by stating that the aim of the mobile libraries was to provide learners and teachers at rural and farm schools with reading books, and they were doing as best they could. While the mobile libraries cannot make up for possible challenges related to teaching and learning or in infrastructure, the learners and the teachers are regularly provided with good resources to encourage reading and stimulate literacy development.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept