Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
15 May 2023 | Story Leonie Bolleurs | Photo Supplied
Spineless Cactus
Axel Tarrisse (far left), a PhD student in the Department of Sustainable Food Systems, working on the biogas and fodder potential of spineless cactus in Africa. Pictured with him are Prof Maryna de Wit, his supervisor and Associate Professor in the UFS Department of Sustainable Food Systems and Development, and Dr Herman Fouché from the Agricultural Research Council.

The spineless cactus is a unique perennial plant that is able to yield close to 40 tons of dry matter per hectare per year with a rainfall of 500 mm per annum. “This equates eight tons of biomethane or 11 000 litres of diesel-equivalent energy per hectare,” says Axel Tarrisse, a PhD student in the Department of Sustainable Food Systems and Development at the University of the Free State (UFS), who is working on the biogas and fodder potential of spineless cactus in Africa.

Tarrisse believes biogas, produced from the spineless cactus, has the potential to complement the supply of South Africa’s existing industrial energy companies to produce sustainable jet fuel and diesel and a variety of other products with the gas-to-liquid process they use.

Developing biogas

He says with rainfall, key nutrients, carbon dioxide, and solar energy it is possible to produce biomass from cactus.

“First, we harvest the cactus and macerate it prior to going into an anaerobic digester where it is heated to 38°C, the same as a cow’s body temperature. Inside the digester, naturally occurring bacteria, similar to those found in their stomachs, break down the cactus, resulting in the production of biogas. This biogas is composed of both methane and carbon dioxide,” he explains.

According to him, biogas generated through this process can be used in a number of ways. This includes running generators to produce electricity or burning it to generate heat. It will also serve as a feedstock to replace coal and natural gas used by companies such as PetroSA and Sasol in their production of synthetic renewable fuels.

“The methane can also be separated from the carbon dioxide and compressed into bottles, creating compressed biomethane. This can be used as a replacement for liquid petroleum gas (LPG), as well as petrol and diesel in vehicles, such as bakkies, tractors, buses, and delivery trucks.”

The carbon dioxide produced in the process can, for example, be used to replace the fossil-based carbon dioxide typically used in the production of carbonated beverages. Additionally, it can be applied to extend the shelf life of packaged foods, serve as a water softener, and even be applied to a variety of industrial applications.

Commercialisation 

Biogas/biomethane is already produced in Mexico on a commercial scale. In Northeast Brazil, farmers have planted 600 000 hectares of spineless cactus, also known as Palma Forrageira, but the machinery needed to harvest it only became commercially available this year.

Back home in South Africa, just 30 km outside of Bloemfontein, Barren Energy farm is at Stage 1 with 140 hectares of high-density cactus planted to provide the initial feedstock for anaerobic digestion. With 600 hectares, they will be able to produce five million litres of diesel-equivalent methane.

Tarrisse says, “With the right methodology and management system, producing biogas from the spineless cactus will be adopted relatively quickly on a commercial scale.”

He believes that the lack of investment in cultivating the spineless cactus as a crop for fodder in South Africa may be due to a few factors. “It is easier to stick to what is known, such as irrigating lucerne and maize and managing these crops with existing planters, pest management solutions, and harvesting machinery than to develop local machinery and management solutions for a perfectly adapted crop,” he says. 

Compelling reasons

According to Tarrisse, there are several compelling reasons to consider the spineless cactus as a source of biogas in South Africa.

Firstly, he explains, “Only the cactus pads, harvested from high-density plantations (20 000 plants per hectares), are used for biogas production.”

“Secondly, the spineless cactus can yield large volumes of biomass from marginal semi-arid land where conditions are unsuitable for conventional crop cultivation. This makes it an ideal option for the 65% of South African land that receives less than 500 mm of rainfall annually.”

Thirdly, he says, “The plant contains 30 to 50% of easily digestible sugars, which degrades easily in an anaerobic digester. This simple, low-tech process can provide a substantial amount of baseload energy with relatively limited capital expenditure, which is particularly important in developing countries such as South Africa where capital is difficult to raise.”

“On top of that, anaerobic digestion only extracts carbon, oxygen, and hydrogen molecules from the cactus, while most of the macro- and micronutrients, water, and some fibres remain in the digestate. This nutrient-rich cactus digestate can then be spread on the cactus fields, reducing the need for fertiliser once the plantation has been fertilised in the first two years of implementation.”

Societal impact

Besides the benefits of producing biogas from the cactus plant, there is also the opportunity of job creation. “This farming can create one million direct job opportunities from only 3% of South Africa’s land area, approximately 4 million hectares,” says Tarrisse.

He is of the opinion that if production was at scale, as opposed to the current small orchard-style farming of cactus, there would be substantial biomass available to sustain not only biomethane, but also to support various bio-industries, such as protein production through cactus fermentation, biomaterials as a substitute for wood-based cellulose, organic acids, and bioplastics. “Consequently, cactus provides a climate-resilient, drought-resistant, and perennial feedstock for food, feed, fibre, and fuel in semi-arid Southern Africa,” he says.

Tarrisse states that this initiative also has the potential to significantly reduce migration from rural to urban areas, therefore addressing issues related to the growth of urbanisation, such as the provision of infrastructure and crime.

News Archive

Water erosion research help determine future of dams
2017-03-07

Description: Dr Jay le Roux Tags: Dr Jay le Roux

Dr Jay le Roux, one of 31 new NRF-rated
researchers at the University of the Free State,
aims for a higher rating from the NRF.
Photo: Rulanzen Martin

“This rating will motivate me to do more research, to improve outcomes, and to aim for a higher C-rating.” This was the response of Dr Jay le Roux, who was recently graded as an Y2-rated researcher by the National Research Foundation (NRF).

Dr Le Roux, senior lecturer in the Department of Geography at the University of the Free State (UFS), is one of 31 new NRF-rated researchers at the UFS. “This grading will make it possible to focus on more specific research during field research and to come in contact with other experts. Researchers are graded on their potential or contribution in their respective fields,” he said.

Research assess different techniques
His research on water erosion risk in South Africa (SA) is a methodological framework with three hierarchal levels presented. It was done in collaboration with the University of Pretoria (UP), Water Research Commission, Department of Agriculture, Forestry and Fisheries, and recently Rhodes University and the Department of Environmental Affairs. Dr Le Roux was registered for 5 years at UP, while working full-time for the Agricultural Research Council – Institute for Soil, Climate and Water (ARC-ISCW).

Water erosion risk assessment in South Africa: towards a methodological framework
, illustrates the most feasible erosion assessment techniques and input datasets that can be used to map water erosion features in SA. It also emphasises the simplicity required for application at a regional scale, with proper incorporation of the most important erosion-causal factors.

The main feature that distinguishes this approach from previous studies is the fact that this study interprets erosion features as individual sediment sources. Modelling the sediment yield contribution from gully erosion (also known as dongas) with emphasis on connectivity and sediment transport, can be considered as an important step towards the assessment of sediment produce at regional scale. 
 
Dams a pivotal element in river networks

Soil is an important, but limited natural resource in SA. Soil erosion not only involves loss of fertile topsoil and reduction of soil productivity, but is also coupled with serious off-site impacts related to increased mobilisation of sediment and delivery to rivers.

The siltation of dams is a big problem in SA, especially dams that are located in eroded catchment areas. Dr Le Roux recently developed a model to assess sediment yield contribution from gully erosion at a large catchment scale. “The Mzimvubu River Catchment is the only large river network in SA on record without a dam.” The flow and sediment yield in the catchment made it possible to estimate dam life expectancies on between 43 and 55 years for future dams in the area.
 
Future model to assess soil erosion
“I plan to finalise a soil erosion model that will determine the sediment yield of gully erosion on a bigger scale.” It will be useful to determine the lifespan of dams where gully erosion is a big problem. Two of his PhD students are currently working on project proposals to assess soil erosion with the help of remote sensing techniques.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept