Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
15 May 2023 | Story Leonie Bolleurs | Photo Supplied
Spineless Cactus
Axel Tarrisse (far left), a PhD student in the Department of Sustainable Food Systems, working on the biogas and fodder potential of spineless cactus in Africa. Pictured with him are Prof Maryna de Wit, his supervisor and Associate Professor in the UFS Department of Sustainable Food Systems and Development, and Dr Herman Fouché from the Agricultural Research Council.

The spineless cactus is a unique perennial plant that is able to yield close to 40 tons of dry matter per hectare per year with a rainfall of 500 mm per annum. “This equates eight tons of biomethane or 11 000 litres of diesel-equivalent energy per hectare,” says Axel Tarrisse, a PhD student in the Department of Sustainable Food Systems and Development at the University of the Free State (UFS), who is working on the biogas and fodder potential of spineless cactus in Africa.

Tarrisse believes biogas, produced from the spineless cactus, has the potential to complement the supply of South Africa’s existing industrial energy companies to produce sustainable jet fuel and diesel and a variety of other products with the gas-to-liquid process they use.

Developing biogas

He says with rainfall, key nutrients, carbon dioxide, and solar energy it is possible to produce biomass from cactus.

“First, we harvest the cactus and macerate it prior to going into an anaerobic digester where it is heated to 38°C, the same as a cow’s body temperature. Inside the digester, naturally occurring bacteria, similar to those found in their stomachs, break down the cactus, resulting in the production of biogas. This biogas is composed of both methane and carbon dioxide,” he explains.

According to him, biogas generated through this process can be used in a number of ways. This includes running generators to produce electricity or burning it to generate heat. It will also serve as a feedstock to replace coal and natural gas used by companies such as PetroSA and Sasol in their production of synthetic renewable fuels.

“The methane can also be separated from the carbon dioxide and compressed into bottles, creating compressed biomethane. This can be used as a replacement for liquid petroleum gas (LPG), as well as petrol and diesel in vehicles, such as bakkies, tractors, buses, and delivery trucks.”

The carbon dioxide produced in the process can, for example, be used to replace the fossil-based carbon dioxide typically used in the production of carbonated beverages. Additionally, it can be applied to extend the shelf life of packaged foods, serve as a water softener, and even be applied to a variety of industrial applications.

Commercialisation 

Biogas/biomethane is already produced in Mexico on a commercial scale. In Northeast Brazil, farmers have planted 600 000 hectares of spineless cactus, also known as Palma Forrageira, but the machinery needed to harvest it only became commercially available this year.

Back home in South Africa, just 30 km outside of Bloemfontein, Barren Energy farm is at Stage 1 with 140 hectares of high-density cactus planted to provide the initial feedstock for anaerobic digestion. With 600 hectares, they will be able to produce five million litres of diesel-equivalent methane.

Tarrisse says, “With the right methodology and management system, producing biogas from the spineless cactus will be adopted relatively quickly on a commercial scale.”

He believes that the lack of investment in cultivating the spineless cactus as a crop for fodder in South Africa may be due to a few factors. “It is easier to stick to what is known, such as irrigating lucerne and maize and managing these crops with existing planters, pest management solutions, and harvesting machinery than to develop local machinery and management solutions for a perfectly adapted crop,” he says. 

Compelling reasons

According to Tarrisse, there are several compelling reasons to consider the spineless cactus as a source of biogas in South Africa.

Firstly, he explains, “Only the cactus pads, harvested from high-density plantations (20 000 plants per hectares), are used for biogas production.”

“Secondly, the spineless cactus can yield large volumes of biomass from marginal semi-arid land where conditions are unsuitable for conventional crop cultivation. This makes it an ideal option for the 65% of South African land that receives less than 500 mm of rainfall annually.”

Thirdly, he says, “The plant contains 30 to 50% of easily digestible sugars, which degrades easily in an anaerobic digester. This simple, low-tech process can provide a substantial amount of baseload energy with relatively limited capital expenditure, which is particularly important in developing countries such as South Africa where capital is difficult to raise.”

“On top of that, anaerobic digestion only extracts carbon, oxygen, and hydrogen molecules from the cactus, while most of the macro- and micronutrients, water, and some fibres remain in the digestate. This nutrient-rich cactus digestate can then be spread on the cactus fields, reducing the need for fertiliser once the plantation has been fertilised in the first two years of implementation.”

Societal impact

Besides the benefits of producing biogas from the cactus plant, there is also the opportunity of job creation. “This farming can create one million direct job opportunities from only 3% of South Africa’s land area, approximately 4 million hectares,” says Tarrisse.

He is of the opinion that if production was at scale, as opposed to the current small orchard-style farming of cactus, there would be substantial biomass available to sustain not only biomethane, but also to support various bio-industries, such as protein production through cactus fermentation, biomaterials as a substitute for wood-based cellulose, organic acids, and bioplastics. “Consequently, cactus provides a climate-resilient, drought-resistant, and perennial feedstock for food, feed, fibre, and fuel in semi-arid Southern Africa,” he says.

Tarrisse states that this initiative also has the potential to significantly reduce migration from rural to urban areas, therefore addressing issues related to the growth of urbanisation, such as the provision of infrastructure and crime.

News Archive

Centre to enhance excellence in agriculture
2008-05-09

 

At the launch of the Centre for Excellence were, from the left, front: Ms Lesego Sejosengoe, Manager: Indigenous Food, Mangaung-University Community Partnership Project (MUCPP), Ms Kefuoe Mohapeloa, Deputy Director: national Department of Agriculture; back: Mr Garfield Whitebooi, Assistant Director: national Department of Agriculture, Dr Wimpie Nell, Director: Centre for Agricultural Management at the UFS, and Mr Petso Mokhatla, from the Centre for Agricultural Management and co-ordinator of the Excellence Model.
Photo: Leonie Bolleurs

UFS centre to enhance excellence in agriculture

The national Department of Agriculture (DoA) appointed the Centre for Agricultural Management within the Department of Agricultural Economics at the University of the Free State (UFS) as the centre of excellence to roll out the excellence model for small, medium and micro enterprises (SMME’s) for farmers in the Free State.

The centre was launched this week on the university’s Main Campus in Bloemfontein.

The excellence model, which is used worldwide, was adapted by the Department of Trade and Industry as an SMME Excellence Model. The DoA then adapted it for agricultural purposes.

“The excellence model aims to assist farmers in identifying gaps in business skills. These gaps will be addressed by means of short courses. It will help to close the gap between the 1st and 4th economy,” said Dr Wimpie Nell, Director of the Centre for Agricultural Management at the UFS.

The UFS – as co-ordinator of the SMME Excellence Model – the DoA, the private sector, municipalities, small enterprise development agencies, and non-governmental organisations will be working together to enhance excellence in agricultural businesses in the Free State.

The benefit of the model is that it changes the mindset of emerging farmers to see agriculture as a business and not as a way of living. Dr Nell said: “We also want to create a culture of competitiveness and sustainability amongst emerging farmers.”

“The Free State is the second province where the model has been implemented. Another four provinces will follow later this year. Altogether 23 officers from the DoA, NGO’s and private sector have already been trained as facilitators by the Centre of Excellence at the UFS,” said Dr Nell.

The facilitator training takes place during four contact sessions, which includes farm visits where facilitators get the opportunity to practically apply what they have learnt. On completion of the training facilitators use the excellence model to evaluate farming businesses and identify which skills (such as financial skills, entrepreneurship, etc.) the farmers need.

The co-ordinator from the Centre of Excellence, Mr Petso Mokhatla, will monitor the facilitators by visiting these farmers to establish the effectiveness of the implementation of the model. Facilitators must also report back to the centre on the progress of the farmers. This is an ongoing process where evaluation will be followed up by training and re-evaluation to ensure that successful establishment of emerging farmers has been achieved.

According to Ms Kefuoe Mohapeloa, Deputy Director from the national Department of Agriculture, one of the aims of government is to redistribute five million hectare of land (480 settled people per month) to previously disadvantaged individuals before 2010. The department also wants to increase black entrepreneurship in rural areas by 10% this year, increase food security by utilising scarce resources by 10%, and increase exports by black farmers by 10%.

“To fulfill these objectives it is very important for emerging farmers to get equipped with the necessary business skills. The UFS was a suitable candidate for this partnership because of its presence in the Accelerated and Shared Growth Initiative of South Africa (ASGISA). With the Jobs for Growth programme, ASGISA is an important extension to the Centre of Excellence and plays a major role in the implementation of the model to improve value-chain management,” said Ms Mohapeloa.

Twenty facilitators will receive training in June and another 20 in October this year. “The more facilitators we can train, the more farmers will benefit from the model,” said Dr Nell.

Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
8 May 2008

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept