Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 November 2023 | Story Ouma Ngoepe | Photo SUPPLIED
Liezl Geldenhuys (ZZ2), Mellisa Pringle (Lasec), Ouma Ngoepe (CMBG), Prof Maryna de Wit (SFSD), Dr Mariana Erasmus (CMBG), Bernadine Taljaard (ZZ2), Khezwo Nematshema (SFSD), Shahiëda Cloete (SFSD), Jan Andries Viktor (SFSD), Vuyelwa Nkoi (SFSD).
Liezl Geldenhuys (ZZ2), Mellisa Pringle (Lasec), Ouma Ngoepe (CMBG), Prof Maryna de Wit (SFSD), Dr Mariana Erasmus (CMBG), Bernadine Taljaard (ZZ2), Khezwo Nematshema (SFSD), Shahiëda Cloete (SFSD), Jan Andries Viktor (SFSD), Vuyelwa Nkoi (SFSD).

The Centre for Mineral Biogeochemistry (CMBG) at the University of the Free State (UFS) was part of another successful Tritech National Science and Technology Fair 2023 – an exciting STEM (Science, Technology, Engineering, and Mathematics) research competition.

The UFS has partnered with Tritech and other sponsors since 2021 to bridge the gap between high school and tertiary education. Tritech, which started in 2008 and is open to all Grade 7-12 learners, aims to equip them for tertiary education by introducing them to scientific research and incorporating modern technology in research. This is an annual competition that starts at the regional level and goes all the way to the national level, with the national competition held at the Merensky High School, in Tzaneen, Limpopo from 20-21 October 2023.

Schools from across the country take part in the fair, but learners compete in groups rather than schools. 

Every year the Tritech Nationals are divided into four main activities over the weekend: 
  1. On the Friday afternoon the learners present their STEM projects in which they have identified a problem in a community, do research to find a solution, do experiments to test if the solution will solve the problem, then test the solution in the community, and lastly, present their findings to a group of judges and learners in similar fields. Fields include Life Sciences, Engineering and Design, Maths, Science and Technology, Environmental and Social Sciences, Health Sciences and Agricultural Sciences.
  2. Friday evening is usually a fun activity for the learners.
  3. On Saturday morning the learners are exposed to work-related activities that give them insight into professions they could pursue in the science field. This activity is sponsored and presented by the UFS. 
  4. The last activity of the weekend is the prize-giving on Saturday afternoon where the learners get rewarded for the quality of their projects and honour, celebrate, and encourage excellence. 

“Every year the CMBG includes different departments from the UFS in alignment with the theme for the event, to ignite a lasting passion for innovation toward promising careers in the STEM fields. In 2022 the theme for Tritech was “Crime Scene Investigators” and the CMBG team created a very realistic crime scene and laboratory setup to teach the learners about Forensic Science. The learners scored our CSI activity as the best for the weekend and we knew that for the 2023 Nationals, we had our work cut out to do even better,” says Dr Erasmus. 

Learning about food health and safety

This year, Prof Maryna de Wit and her students from the Department of Sustainable Food Systems and Development (SFSD) joined the CMBG team, to introduce learners to food health and safety, food preservation, food systems and development, as well as sensory analyses. 

Island, shipwrecks, and wilderness survival

Dr Mariana Erasmus, Deputy Director of the Centre for Mineral Biogeochemistry (CMBG), spearheads the Tritech team from the UFS. CMBG, as part of its community outreach programme, is not only a sponsor of the event but is also the organiser of the main activity together with another UFS department. 

Dr Erasmus says the theme for Tritech 2023 was “Survival MasterChef”, where for the two activity events, the Tritech learners were “stranded” on an island. This exercise was a great way to promote leadership qualities, encourage creativity and confidence, promote teamwork and active communication, and increase critical thinking in learners, while they got to know more about food health and safety practices.

“It was all island, shipwrecks, and wilderness survival at this year’s event where learners had to survive after being ‘stranded’ on an island. To escape, the learners had to build a boat and while they waited to be rescued, they needed to adapt to island life to survive by preparing healthy meals, as well as preparing meals and drinks to treat dehydration and scurvy,” says Dr Erasmus. 

“During the prize-giving, some of the learners received shadowing opportunities at the UFS and other sponsors to advance their education. Bronze, silver, and gold medals, together with participation certificates, were awarded to other deserving learners.” 

News Archive

Research contributes to improving quality of life for cancer patients
2016-11-21

Description: Inorganic Chemistry supervisors  Tags: Inorganic Chemistry supervisors

Inorganic Chemistry supervisors in the Radiopharmacy
Laboratory during the preparation of a typical complex
mixture to see how fast it reacts. Here are, from the left,
front: Dr Marietjie Schutte-Smith, Dr Alice Brink
(both scholars from the UFS Prestige
Scholar Programme), and Dr Truidie Venter (all three
are Thuthuka-funded researchers).
Back: Prof André Roodt and Dr Johan Venter.
Photo: Supplied

Imagine that you have been diagnosed with bone cancer and only have six months to live. You are in a wheelchair because the pain in your legs is so immense that you can’t walk anymore – similar to a mechanism eating your bones from the inside.

You are lucky though, since you could be injected with a drug to control the pain so effective that you will be able to get out of the wheelchair within a day-and-a-half and be able to walk again. Real-life incidents like these provide intense job satisfaction to Prof André Roodt, Head of Inorganic Chemistry at the University of the Free State (UFS). The research, which is conducted by the Inorganic Group at the UFS, contributes greatly to the availability of pain therapy that does not involve drugs, but improves the quality of life for cancer patients.

The research conducted by the Inorganic Group under the leadership of Prof Roodt, plays a major role in the clever design of model medicines to better detect and treat cancer.

The Department of Chemistry is one of approximately 10 institutions worldwide that conducts research on chemical mechanisms to identify and control cancer. “The fact that we are able to cooperate with the Departments of Nuclear Medicine and Medical Physics at the UFS, the Animal Research Centre, and other collaborators in South Africa and abroad, but especially the methodology we utilise to conduct research (studying the chemical manner in which drugs are absorbed in cancer as well as the time involved), enhances the possibility of making a contribution to cancer research,” says Prof Roodt.

Technique to detect cancer spots on bone
According to the professor, there are various ways of detecting cancer in the body. Cancer can, inter alia, be identified by analysing blood, X-rays (external) or through an internal technique where the patient is injected with a radioactive isotope.

Prof Roodt explains: “The doctor suspects that the patient has bone cancer and injects the person with a drug consisting of an isotope (only emits X-rays and does no damage to tissue) that is connected to a phosphonate (similar to those used for osteoporosis). Once the drug is injected, the isotope (Technetium-99m) moves to the spot on the bone where the cancer is located. The gamma rays in the isotope illuminate the area and the doctor can see exactly where treatment should be applied. The Technetium-99m has the same intensity gamma rays as normal X-rays and therefore operates the same as an internal X-ray supply.” With this technique, the doctor can see where the cancer spots are within a few hours.

The same technique can be used to identify inactive parts of the brain in Alzheimer patients, as well as areas of the heart where there is no blood supply or where the heart muscle is dead.

Therapeutic irradiation of cancer
For the treatment of pain connected with cancer, the isotope Rhenium-186 is injected. Similar to the manner in which the Technetium-99m phosphonate compound is ingested into the body, the Rhenium-186 phosphonate travels to the cancer spots. Patients thus receive therapeutic irradiation – a technique known as palliative therapy, which is excellent for treating pain. A dosage of this therapy usually lasts for about two months.

The therapy is, however, patient specific. The dosages should correspond with the occurrence and size of cancer spots in the patient’s body. First, the location of the cancer will be determined by means of a technetium scan. After that, the size of the area where the cancer occurs has to be determined. The dosage for addressing total pain distribution will be calculated according to these results.

Technique to detect cancer spots on soft tissue
Another technique to detect cancer as spots on bone or in soft tissue and organs throughout the body is by utilising a different type of irradiation, a so-called PET isotope. The Fluor-18 isotope is currently used widely, and in Pretoria a machine called a cyclotron was produced by Dr Gerdus Kemp, who is a former PhD graduate from the Inorganic Research Group. The F-18 is then hidden within a glucose molecule and a patient will be injected with the drug after being tranquillised and after the metabolism has been lowered considerably. The glucose, which is the ‘food' that cancer needs to grow, will then travel directly to the cancer area and the specific area where the cancer is located will thus be traced and ‘illuminated’ by the Fluor-18, which emits its own 'X-rays'.

In the late 80s, Prof Roodt did his own postdoctoral study on this research in the US. He started collaborating with the Department of Nuclear Medicine at the UFS in the early 90s, when he initiated testing for this research.

Through their research of more than 15 years, the Inorganic Group in the Department of Chemistry has made a major contribution to cancer research. Research on mechanisms for the detection of cancer, by designing new clever chemical agents, and the chemical ways in which these agents are taken up in the body, especially contributes to the development in terms of cancer therapy and imaging, and has been used by a number of hospitals in South Africa.

The future holds great promise
Prof Roodt and his team are already working on a bilateral study between the UFS and Kenya. It involves the linking of radio isotopes, as mentioned above, to known natural products (such as rooibos tea), which possess anti-cancer qualities.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept