Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
03 November 2023 | Story André Damons | Photo SUPPLIED
SDG Competition 2023
From left: Dr Brandon van Rooyen, Dr Anathi Makamane, Dr Yolandi Schoeman and Daniel Naudé participated and won the SDG Challenge South Africa. Pieter Bruwer is absent from the photo.

A team of exceptional students from the University of the Free State (UFS) has claimed victory in the prestigious SDG Challenge South Africa, a global competition that unites students and organisations to address the United Nations Sustainable Development Goals (UNSDGs). This remarkable achievement not only underscores the skill and dedication of UFS students but also reinforces their commitment to forging a more sustainable and equitable world.

The group of students from different disciplines within the Faculty of Natural and Agricultural Sciences (NAS), came up with an interdisciplinary and forward-thinking approach which contributed significantly to their victory. The team members, including Pieter Bruwer, Dr Anathi Makamane, Dr Brandon van Rooyen (all from Sustainable Food Systems and Development), Daniel Naudé (Department of Agriculture Economics), as well as Dr Yolandi Schoeman (a postdoctoral fellow in the Centre for Environmental Management (CEM) from the Faculty of Natural and Agricultural Sciences, each brought their unique expertise to the challenge.

Prof Jan Willem Swanepoel, Associate Professor in the Department of Sustainable Food Systems and Development within the Faculty of Natural and Agricultural Sciences, provided invaluable mentorship to the team. The students were also supported by Robyn Mellett from OMI Solutions.

Dr Schoeman says the SDG Challenge, designed to confront global challenges, connects students and organisations from across the globe, fostering collaboration towards achieving the UNSDGs, which encompass critical issues such as climate change and the reduction of global inequalities. Teams from South African universities, including the University of Cape Town, Stellenbosch University, and the University of KwaZulu-Natal, partnered with leading companies to address specific challenges tied to their corporate missions.

Develop a waste management strategy

Team UFS joined forces with Ivanhoe Mines, a prominent mining company operating in the Democratic Republic of Congo to develop a waste management strategy for the Kamoa-Kakula Copper Complex. This endeavour was laden with complexities due to the limited waste management options available in the area. The challenge was not just about managing multiple waste streams from the mining complex, but also about addressing socioeconomic and biodiversity challenges stemming from the burgeoning population in the region, which led to a range of environmental concerns.

“In response, the UFS team innovatively conceived ÉcoFlotille, a solution that not only tackled essential waste management issues but also promoted biodiversity net gain. The plan extended its reach to support local agribusinesses and small and micro-enterprises through the repurposing and reuse of waste materials, while presenting a unique biofinancing opportunity. The EcoFlotille solution represents a distinctive aspect of their triumphant journey.

“ÉcoFlotille not only aligns with the SDGs but also plays a crucial role in realising the vision of the Kunming-Montreal Global Biodiversity Framework, which emphasises the conservation and sustainable use of biodiversity. Additionally, it aligns with the goals of Agenda 2063 for Africa, striving to advance the continent’s development objectives and create a prosperous and harmonious future for the region,” says Dr Schoeman. 

The scalability of ÉcoFlotille across Africa holds great promise. Its innovative waste management approach and biofinancing potential could serve as a model for addressing similar challenges in diverse regions of the continent. This opens up opportunities for wider adoption and positive impacts throughout Africa.

Creating a more sustainable and equitable world

The SDG Challenge South Africa is an integral part of Soapbox’s global mission to mobilise university students and organisations in working collaboratively toward the UNSDG. These goals aim to address the world’s most pressing challenges, requiring collective efforts to achieve sustainable economic growth, environmental sustainability, and social inclusion by 2030.

The UFS’s remarkable success in the SDG Challenge not only highlights the university’s dedication to fostering global citizenship and sustainability but also underscores the remarkable potential of its students in driving positive change in Africa and the world.

According to Dr Schoeman, the UFS team’s victory in the SDG Challenge stands as a testament to their unwavering commitment to creating a more sustainable and equitable world. Their innovative solution, ÉcoFlotille, serves as a beacon of hope, illustrating how the vigour and ingenuity of the younger generation can propel us closer to realising the UNSDG by 2030, effectively ticking all 17 SDG boxes.

Solving a real-world problem

Prof Swanepoel says the SDG Challenge is a global competition that unites students and organisations to address the UNSDGs. These goals encompass some of the most pressing challenges facing our world today, such as climate change, poverty, and inequality.

According to him, by participating in the SDG Challenge, the UFS students had the opportunity to apply their knowledge and skills to solve a real-world problem experienced by one of the biggest mining houses in the world. They gained valuable experience in collaborating with the private sector.

“I am immensely proud of the students' achievement in the prestigious Soapbox SDG Challenge South Africa. Their interdisciplinary approach and forward-thinking mindset are a testament to the calibre of education and mentorship they receive at the UFS,” Prof Swanepoel says. 

“Furthermore, I am confident that the skills and experience gained through the SDG Challenge will help the students to make a positive impact on the world. They are the next generation of leaders who will be responsible for addressing the complex social and environmental challenges Africa face. I also believe that coming out as victors in this competition would open more doors for them and the university in the private sector.”

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept