Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
03 November 2023 | Story André Damons | Photo SUPPLIED
SDG Competition 2023
From left: Dr Brandon van Rooyen, Dr Anathi Makamane, Dr Yolandi Schoeman and Daniel Naudé participated and won the SDG Challenge South Africa. Pieter Bruwer is absent from the photo.

A team of exceptional students from the University of the Free State (UFS) has claimed victory in the prestigious SDG Challenge South Africa, a global competition that unites students and organisations to address the United Nations Sustainable Development Goals (UNSDGs). This remarkable achievement not only underscores the skill and dedication of UFS students but also reinforces their commitment to forging a more sustainable and equitable world.

The group of students from different disciplines within the Faculty of Natural and Agricultural Sciences (NAS), came up with an interdisciplinary and forward-thinking approach which contributed significantly to their victory. The team members, including Pieter Bruwer, Dr Anathi Makamane, Dr Brandon van Rooyen (all from Sustainable Food Systems and Development), Daniel Naudé (Department of Agriculture Economics), as well as Dr Yolandi Schoeman (a postdoctoral fellow in the Centre for Environmental Management (CEM) from the Faculty of Natural and Agricultural Sciences, each brought their unique expertise to the challenge.

Prof Jan Willem Swanepoel, Associate Professor in the Department of Sustainable Food Systems and Development within the Faculty of Natural and Agricultural Sciences, provided invaluable mentorship to the team. The students were also supported by Robyn Mellett from OMI Solutions.

Dr Schoeman says the SDG Challenge, designed to confront global challenges, connects students and organisations from across the globe, fostering collaboration towards achieving the UNSDGs, which encompass critical issues such as climate change and the reduction of global inequalities. Teams from South African universities, including the University of Cape Town, Stellenbosch University, and the University of KwaZulu-Natal, partnered with leading companies to address specific challenges tied to their corporate missions.

Develop a waste management strategy

Team UFS joined forces with Ivanhoe Mines, a prominent mining company operating in the Democratic Republic of Congo to develop a waste management strategy for the Kamoa-Kakula Copper Complex. This endeavour was laden with complexities due to the limited waste management options available in the area. The challenge was not just about managing multiple waste streams from the mining complex, but also about addressing socioeconomic and biodiversity challenges stemming from the burgeoning population in the region, which led to a range of environmental concerns.

“In response, the UFS team innovatively conceived ÉcoFlotille, a solution that not only tackled essential waste management issues but also promoted biodiversity net gain. The plan extended its reach to support local agribusinesses and small and micro-enterprises through the repurposing and reuse of waste materials, while presenting a unique biofinancing opportunity. The EcoFlotille solution represents a distinctive aspect of their triumphant journey.

“ÉcoFlotille not only aligns with the SDGs but also plays a crucial role in realising the vision of the Kunming-Montreal Global Biodiversity Framework, which emphasises the conservation and sustainable use of biodiversity. Additionally, it aligns with the goals of Agenda 2063 for Africa, striving to advance the continent’s development objectives and create a prosperous and harmonious future for the region,” says Dr Schoeman. 

The scalability of ÉcoFlotille across Africa holds great promise. Its innovative waste management approach and biofinancing potential could serve as a model for addressing similar challenges in diverse regions of the continent. This opens up opportunities for wider adoption and positive impacts throughout Africa.

Creating a more sustainable and equitable world

The SDG Challenge South Africa is an integral part of Soapbox’s global mission to mobilise university students and organisations in working collaboratively toward the UNSDG. These goals aim to address the world’s most pressing challenges, requiring collective efforts to achieve sustainable economic growth, environmental sustainability, and social inclusion by 2030.

The UFS’s remarkable success in the SDG Challenge not only highlights the university’s dedication to fostering global citizenship and sustainability but also underscores the remarkable potential of its students in driving positive change in Africa and the world.

According to Dr Schoeman, the UFS team’s victory in the SDG Challenge stands as a testament to their unwavering commitment to creating a more sustainable and equitable world. Their innovative solution, ÉcoFlotille, serves as a beacon of hope, illustrating how the vigour and ingenuity of the younger generation can propel us closer to realising the UNSDG by 2030, effectively ticking all 17 SDG boxes.

Solving a real-world problem

Prof Swanepoel says the SDG Challenge is a global competition that unites students and organisations to address the UNSDGs. These goals encompass some of the most pressing challenges facing our world today, such as climate change, poverty, and inequality.

According to him, by participating in the SDG Challenge, the UFS students had the opportunity to apply their knowledge and skills to solve a real-world problem experienced by one of the biggest mining houses in the world. They gained valuable experience in collaborating with the private sector.

“I am immensely proud of the students' achievement in the prestigious Soapbox SDG Challenge South Africa. Their interdisciplinary approach and forward-thinking mindset are a testament to the calibre of education and mentorship they receive at the UFS,” Prof Swanepoel says. 

“Furthermore, I am confident that the skills and experience gained through the SDG Challenge will help the students to make a positive impact on the world. They are the next generation of leaders who will be responsible for addressing the complex social and environmental challenges Africa face. I also believe that coming out as victors in this competition would open more doors for them and the university in the private sector.”

News Archive

Research contributes to improving quality of life for cancer patients
2016-11-21

Description: Inorganic Chemistry supervisors  Tags: Inorganic Chemistry supervisors

Inorganic Chemistry supervisors in the Radiopharmacy
Laboratory during the preparation of a typical complex
mixture to see how fast it reacts. Here are, from the left,
front: Dr Marietjie Schutte-Smith, Dr Alice Brink
(both scholars from the UFS Prestige
Scholar Programme), and Dr Truidie Venter (all three
are Thuthuka-funded researchers).
Back: Prof André Roodt and Dr Johan Venter.
Photo: Supplied

Imagine that you have been diagnosed with bone cancer and only have six months to live. You are in a wheelchair because the pain in your legs is so immense that you can’t walk anymore – similar to a mechanism eating your bones from the inside.

You are lucky though, since you could be injected with a drug to control the pain so effective that you will be able to get out of the wheelchair within a day-and-a-half and be able to walk again. Real-life incidents like these provide intense job satisfaction to Prof André Roodt, Head of Inorganic Chemistry at the University of the Free State (UFS). The research, which is conducted by the Inorganic Group at the UFS, contributes greatly to the availability of pain therapy that does not involve drugs, but improves the quality of life for cancer patients.

The research conducted by the Inorganic Group under the leadership of Prof Roodt, plays a major role in the clever design of model medicines to better detect and treat cancer.

The Department of Chemistry is one of approximately 10 institutions worldwide that conducts research on chemical mechanisms to identify and control cancer. “The fact that we are able to cooperate with the Departments of Nuclear Medicine and Medical Physics at the UFS, the Animal Research Centre, and other collaborators in South Africa and abroad, but especially the methodology we utilise to conduct research (studying the chemical manner in which drugs are absorbed in cancer as well as the time involved), enhances the possibility of making a contribution to cancer research,” says Prof Roodt.

Technique to detect cancer spots on bone
According to the professor, there are various ways of detecting cancer in the body. Cancer can, inter alia, be identified by analysing blood, X-rays (external) or through an internal technique where the patient is injected with a radioactive isotope.

Prof Roodt explains: “The doctor suspects that the patient has bone cancer and injects the person with a drug consisting of an isotope (only emits X-rays and does no damage to tissue) that is connected to a phosphonate (similar to those used for osteoporosis). Once the drug is injected, the isotope (Technetium-99m) moves to the spot on the bone where the cancer is located. The gamma rays in the isotope illuminate the area and the doctor can see exactly where treatment should be applied. The Technetium-99m has the same intensity gamma rays as normal X-rays and therefore operates the same as an internal X-ray supply.” With this technique, the doctor can see where the cancer spots are within a few hours.

The same technique can be used to identify inactive parts of the brain in Alzheimer patients, as well as areas of the heart where there is no blood supply or where the heart muscle is dead.

Therapeutic irradiation of cancer
For the treatment of pain connected with cancer, the isotope Rhenium-186 is injected. Similar to the manner in which the Technetium-99m phosphonate compound is ingested into the body, the Rhenium-186 phosphonate travels to the cancer spots. Patients thus receive therapeutic irradiation – a technique known as palliative therapy, which is excellent for treating pain. A dosage of this therapy usually lasts for about two months.

The therapy is, however, patient specific. The dosages should correspond with the occurrence and size of cancer spots in the patient’s body. First, the location of the cancer will be determined by means of a technetium scan. After that, the size of the area where the cancer occurs has to be determined. The dosage for addressing total pain distribution will be calculated according to these results.

Technique to detect cancer spots on soft tissue
Another technique to detect cancer as spots on bone or in soft tissue and organs throughout the body is by utilising a different type of irradiation, a so-called PET isotope. The Fluor-18 isotope is currently used widely, and in Pretoria a machine called a cyclotron was produced by Dr Gerdus Kemp, who is a former PhD graduate from the Inorganic Research Group. The F-18 is then hidden within a glucose molecule and a patient will be injected with the drug after being tranquillised and after the metabolism has been lowered considerably. The glucose, which is the ‘food' that cancer needs to grow, will then travel directly to the cancer area and the specific area where the cancer is located will thus be traced and ‘illuminated’ by the Fluor-18, which emits its own 'X-rays'.

In the late 80s, Prof Roodt did his own postdoctoral study on this research in the US. He started collaborating with the Department of Nuclear Medicine at the UFS in the early 90s, when he initiated testing for this research.

Through their research of more than 15 years, the Inorganic Group in the Department of Chemistry has made a major contribution to cancer research. Research on mechanisms for the detection of cancer, by designing new clever chemical agents, and the chemical ways in which these agents are taken up in the body, especially contributes to the development in terms of cancer therapy and imaging, and has been used by a number of hospitals in South Africa.

The future holds great promise
Prof Roodt and his team are already working on a bilateral study between the UFS and Kenya. It involves the linking of radio isotopes, as mentioned above, to known natural products (such as rooibos tea), which possess anti-cancer qualities.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept