Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
03 November 2023 | Story André Damons | Photo SUPPLIED
SDG Competition 2023
From left: Dr Brandon van Rooyen, Dr Anathi Makamane, Dr Yolandi Schoeman and Daniel Naudé participated and won the SDG Challenge South Africa. Pieter Bruwer is absent from the photo.

A team of exceptional students from the University of the Free State (UFS) has claimed victory in the prestigious SDG Challenge South Africa, a global competition that unites students and organisations to address the United Nations Sustainable Development Goals (UNSDGs). This remarkable achievement not only underscores the skill and dedication of UFS students but also reinforces their commitment to forging a more sustainable and equitable world.

The group of students from different disciplines within the Faculty of Natural and Agricultural Sciences (NAS), came up with an interdisciplinary and forward-thinking approach which contributed significantly to their victory. The team members, including Pieter Bruwer, Dr Anathi Makamane, Dr Brandon van Rooyen (all from Sustainable Food Systems and Development), Daniel Naudé (Department of Agriculture Economics), as well as Dr Yolandi Schoeman (a postdoctoral fellow in the Centre for Environmental Management (CEM) from the Faculty of Natural and Agricultural Sciences, each brought their unique expertise to the challenge.

Prof Jan Willem Swanepoel, Associate Professor in the Department of Sustainable Food Systems and Development within the Faculty of Natural and Agricultural Sciences, provided invaluable mentorship to the team. The students were also supported by Robyn Mellett from OMI Solutions.

Dr Schoeman says the SDG Challenge, designed to confront global challenges, connects students and organisations from across the globe, fostering collaboration towards achieving the UNSDGs, which encompass critical issues such as climate change and the reduction of global inequalities. Teams from South African universities, including the University of Cape Town, Stellenbosch University, and the University of KwaZulu-Natal, partnered with leading companies to address specific challenges tied to their corporate missions.

Develop a waste management strategy

Team UFS joined forces with Ivanhoe Mines, a prominent mining company operating in the Democratic Republic of Congo to develop a waste management strategy for the Kamoa-Kakula Copper Complex. This endeavour was laden with complexities due to the limited waste management options available in the area. The challenge was not just about managing multiple waste streams from the mining complex, but also about addressing socioeconomic and biodiversity challenges stemming from the burgeoning population in the region, which led to a range of environmental concerns.

“In response, the UFS team innovatively conceived ÉcoFlotille, a solution that not only tackled essential waste management issues but also promoted biodiversity net gain. The plan extended its reach to support local agribusinesses and small and micro-enterprises through the repurposing and reuse of waste materials, while presenting a unique biofinancing opportunity. The EcoFlotille solution represents a distinctive aspect of their triumphant journey.

“ÉcoFlotille not only aligns with the SDGs but also plays a crucial role in realising the vision of the Kunming-Montreal Global Biodiversity Framework, which emphasises the conservation and sustainable use of biodiversity. Additionally, it aligns with the goals of Agenda 2063 for Africa, striving to advance the continent’s development objectives and create a prosperous and harmonious future for the region,” says Dr Schoeman. 

The scalability of ÉcoFlotille across Africa holds great promise. Its innovative waste management approach and biofinancing potential could serve as a model for addressing similar challenges in diverse regions of the continent. This opens up opportunities for wider adoption and positive impacts throughout Africa.

Creating a more sustainable and equitable world

The SDG Challenge South Africa is an integral part of Soapbox’s global mission to mobilise university students and organisations in working collaboratively toward the UNSDG. These goals aim to address the world’s most pressing challenges, requiring collective efforts to achieve sustainable economic growth, environmental sustainability, and social inclusion by 2030.

The UFS’s remarkable success in the SDG Challenge not only highlights the university’s dedication to fostering global citizenship and sustainability but also underscores the remarkable potential of its students in driving positive change in Africa and the world.

According to Dr Schoeman, the UFS team’s victory in the SDG Challenge stands as a testament to their unwavering commitment to creating a more sustainable and equitable world. Their innovative solution, ÉcoFlotille, serves as a beacon of hope, illustrating how the vigour and ingenuity of the younger generation can propel us closer to realising the UNSDG by 2030, effectively ticking all 17 SDG boxes.

Solving a real-world problem

Prof Swanepoel says the SDG Challenge is a global competition that unites students and organisations to address the UNSDGs. These goals encompass some of the most pressing challenges facing our world today, such as climate change, poverty, and inequality.

According to him, by participating in the SDG Challenge, the UFS students had the opportunity to apply their knowledge and skills to solve a real-world problem experienced by one of the biggest mining houses in the world. They gained valuable experience in collaborating with the private sector.

“I am immensely proud of the students' achievement in the prestigious Soapbox SDG Challenge South Africa. Their interdisciplinary approach and forward-thinking mindset are a testament to the calibre of education and mentorship they receive at the UFS,” Prof Swanepoel says. 

“Furthermore, I am confident that the skills and experience gained through the SDG Challenge will help the students to make a positive impact on the world. They are the next generation of leaders who will be responsible for addressing the complex social and environmental challenges Africa face. I also believe that coming out as victors in this competition would open more doors for them and the university in the private sector.”

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept