Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 October 2023 | Story Samkelo Fetile | Photo Supplied
The finalists in the 2023 Matriculant of the Year competition

In a culmination of academic prowess, leadership, sportsmanship, cultural achievements, and community engagement, the University of the Free State (UFS), Matriculant of the Year competition for 2023 has declared Michael de Bruyn, the head boy of Futurum Akademie in Tadcaster near Jan Kempdorp in the Northern Cape, as the 42nd winner. This prestigious event, in collaboration with Netwerk24 and Volksblad, witnessed the participation of 66 outstanding matriculants from eight provinces.

The journey to success for these matriculants was not only a test of academic acumen but a comprehensive evaluation of their leadership skills, involvement in sports and cultural activities, and commitment to community projects. The top 25 entrants were honoured with bursaries from the UFS, a testament to the institution's dedication to nurturing talent and fostering academic excellence.

The stakes were raised even higher for the top 14 finalists, who gathered at the Monte Bello Estate near Bloemfontein for the final judging. This phase involved personal interviews and group sessions, challenging the finalists to showcase not only their intellectual capabilities but also their interpersonal skills and collaborative spirit.

Sponsors and Supporters

Despite the economic challenges, the Matriculant of the Year competition has continued to thrive, thanks to the unwavering support of its sponsors. The final round judges, representing the Kovsie Alumni Trust, Absa, Mazars (official auditors), and Pick n Pay Preller Walk, played a crucial role in determining the ultimate winner.

In addition to the overall winner, the Kovsie Alumni Trust went above and beyond by sponsoring two special prizes for exceptional achievements in culture and sports. Ilke de Klerk of Goudveld-Hoërskool in Welkom received the sports accolade for her outstanding accomplishments in athletics and netball. Recognising cultural excellence, two accomplished pianists, Karli Janeke from St Dunstan’s College in Benoni and Elizabeth Joubert from C & N Meisieskool Oranje in Bloemfontein, were honoured for their exceptional contributions.

Culture and Sports Recognised

The spirit of the competition extends beyond academic and extracurricular achievements, acknowledging the vibrant personalities that contribute to a well-rounded community. Renienke van Heerden from Jim Fouché High School in Bloemfontein was voted as the sparkling personality, showcasing that the matriculants of 2023 are not only accomplished in their fields but also possess a captivating and engaging presence.

As the 42nd winner of the Matriculant of the Year competition, Michael de Bruyn stands as a beacon of inspiration for future generations and symbolises the UFS's commitment to recognising and nurturing excellence in all its forms. The competition serves not only as a celebration of academic achievement but also as a platform for the holistic development of young minds, moulding them into leaders, athletes, artists, and compassionate community members.

Nomonde Mbadi, Director at the Department of Student Recruitment Services, extends her congratulations to the finalists of the Matriculant of the Year 2023 competition. “I commend the learners for their outstanding achievements, and I do acknowledge the potential they carry for the future. May their accomplishments serve as inspiration for many others to pursue excellence and contribute positively to the world.”

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept