Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 October 2023 | Story Michelle Nöthling | Photo iStock
Commemorating World Mental Health Month 2023
The mental health of university students is of growing global concern.

One of the largest student mental health surveys in the world – initiated by Universities South Africa (USAf) in 2020 – found that up to 20% of university students in South Africa need mental health support. The research results also show that up to 77% of students with mental health disorders are not getting help. Contributing reasons include reluctance to seek help due to lingering stigma surrounding mental health, but also limited access. With growing demand and limited capacity, one-on-one therapy does not seem to be a sustainable solution. Some of the recommendations that stem from the report are to introduce a range of digitally based self-help interventions, to provide psychoeducation about when to access help, and to offer peer-to-peer support. This is precisely what the University of the Free State (UFS) Department of Student Counselling and Development (SCD) is now implementing. 

Coinciding with World Mental Health Awareness Month, SCD’s Road Map embodies a paradigm shift in student mental health support. “We want to capacitate students on their mental health journey. Following the Road Map, our students are now able to be active agents in their mental well-being,” says Dr Munita Dunn-Coetzee, SCD Director.

What exactly is this Road Map?

The SCD Road Map guides students to multiple sources of support. On the SCD website, students can delve into a wealth of self-help guides and toolkits that range from academic, emotional, and social well-being to personal challenges and psychological distress. In a commitment to expand the SCD reach beyond one-on-one sessions, the department is offering both in-person and online workshops and development programmes that can be accessed through Blackboard. Additionally, podcasts have been integrated into the SCD offerings to accommodate students' varying schedules and data constraints.

SCD has also partnered with the South African Depression and Anxiety Group (SADAG) to provide a 24/7 toll-free UFS Student Careline. The Careline can be reached in three ways: by calling 0800 00 6363, SMSing 43302, or emailing helpline@sadag.org. In a crisis, help is immediately activated, and assistance is sent to the student.

Another exciting aspect of SCD's Road Map¬ – which further integrates recommendations from the research report – is the shift from individual-centric interventions to group-based support. “We want to expand beyond individual therapy,” Dr Dunn-Coetzee says. “Although one-on-one therapy has an important place in mental health support, we are currently expanding to offer various support groups.” Through these circles of support, SCD aims to foster a culture of mutual learning, peer-to-peer connection, and collective well-being.

The Road Map therefore enables SCD to pivot toward a capacitating approach, equipping students to navigate their mental health journey in a truly collaborative model.

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept