Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 September 2023 | Story André Damons | Photo Supplied
radiation dose distribution
The patient is still under anaesthesia, the placement of the brachytherapy applicators is completed, and they are connected to the Iridium source for the radiation to be given.

Medical personnel at the Universitas Academic Hospital and the University of the Free State (UFS) in Bloemfontein became the first in Southern Africa to use Interstitial brachytherapy as a method for treating cervical cancer. 

A multidisciplinary team, consisting of an anaesthetist, clinical oncologists, application specialists, medical physicists, radiation therapy radiographers and professional nurses, completed the first interstitial cervical cancer brachytherapy in Southern Africa at Universitas Academic Complex in June this year.

Prof Alicia Sherriff, Head of the UFS Department of Oncology and a clinical oncologist, explained: “Brachytherapy is a method of internal radiation therapy, where a source of radiation is placed inside or near the cancer. This type of radiation travels only a short distance and makes it possible to deliver curative doses to the cancer while staying within the tolerance of the surrounding bladder, rectum, and small bowel.” 

She further emphasised that intracavitary brachytherapy has been an essential component of the curative management of cervical cancer since 1938.

According to her, feasibility studies were published for the use of applicators that combine intracavitary and interstitial brachytherapy in 2006. In 2014 prospective clinical trials started reflecting on the clinical value to improve local control for the locally advanced cervical cancers with combining intracavitary and interstitial brachytherapy to get higher doses of radiation where the cancer has grown outside of the cervix. Interstitial brachytherapy where the applicators are placed into the tissue with cancer are also used in prostate and breast cancer. 

Second-most common cancer in South African women

As per the Catalan Institute of Oncology (ICO) and the International Agency for Research on Cancer (IARC) information Centre on Human Papilloma Virus and cancer publication of March 2023, the current new diagnoses of cervical cancer annually in South Africa are 10,702 with 5,870 patients passing away annually due to cervical cancer. It is the second-most common cancer in women in South Africa and the most common among women between 15 and 44. Due to late/delayed presentation and diagnoses most cervical cancer patients seen have more advanced stages where the cancer has infiltrated outside of the cervix into the surrounding tissue.

“At the Universitas Academic Complex we have been approaching cervical brachytherapy with CT (Computer Tomography)-based image guidance for more than a decade already and the past five years we have been doing Adaptive CT-based image guided brachytherapy. 

“This means that with each brachytherapy treatment the cancer and all the surrounding normal organs are delineated based on a new CT image to ensure that we consider how the cancer has shrunk from one brachytherapy to the next and to see how we can limit the dose to the surrounding organs but at the same time achieve the highest possible dose of radiation with each treatment,” says Prof Sherriff. 

Planning to expand the use to other cancers

The intracavitary brachytherapy applicators which are used most frequently are placed within the cervix and uterus and deliver high doses there but cannot address the infiltration into the surrounding tissue adequately, she continued. “That is where these additional needles that are placed via the Venezia applicator into the surrounding tissue give the ability to also reach those areas with high-dose radiation while sparing the organs.”

Prof Sherriff explained that the interstitial brachytherapy does add additional time, expertise and logistical planning to the management and would not be utilised for all cervical cancer patients, but for those patients with locally advanced disease whose general health would support a more aggressive approach. The other academic training institutions are aiming to add interstitial brachytherapy to their platforms as well as at the UFS which is also planning to expand the use to other cancers. 

Save more lives

The MEC for Health in the Free State province, Mathabo Leeto, has congratulated medical professionals on this groundbreaking medical intervention. 

She said this breakthrough is in line with goals set by the United Nations in not only the provision of quality health services, but also and importantly, saving lives.

“This milestone is responsive to our targets for improvement of women’s health and reducing mortality. It is responsive also to Goal 3 of the United Nations’ Sustainable Development Goals which seeks to reduce global maternal mortality ratio, ensure universal access to sexual and reproductive health-care services, including for family planning, information and education, and the integration of reproductive health into national strategies and programmes,” she said.

“Hopefully this breakthrough will help us save many more lives. I wish to congratulate everyone who contributed to this innovative way of cancer treatment and assure you that your province and the people are indebted to you,” concluded Leeto.

 


The medical staff who were involved in the first interstitial cervical cancer brachytherapy in Southern Africa were, from left: Dr Marnus Booyens (Anaesthetist); Dr Karin Vorster (Head Clinical unit and Clinical Oncologist); Dr Willie Shaw (Head of Medical Physics for the division of Radiation Oncology); Khalil Ben Fredj (Application Specialist ELEKTA for the TIMEA region and medical physicist); Prof Alicia Sherriff (HOD Oncology and clinical oncologist); Dr Dedri O’Reilly(medical physicist); Chantel Stroebel (Radiation therapy radiographer at brachytherapy); Dr Lourens Strauss (Medical physicist); Karl Sachse (Medical physicist); Sr Angelique Engelbrecht (professional nurse); Marga Claassen (Clinical and Commercial Account Specialist, SA for Elekta and Medical physicist).

News Archive

Bloemfontein's quality of tap water compares very favourably with bottled water
2009-08-04

The quality of the drinking water of five suburbs in Bloemfontein is at least as good as or better than bottled water. This is the result of a standard and chemical bacterial analysis done by the University of the Free State’s (UFS) Centre for Environmental Management in collaboration with the Institute for Groundwater Studies (IGS).

Five samples were taken from tap water sources in the suburbs of Universitas, Brandwag, Bain’s Vlei, Langenhoven Park and Bayswater and 15 samples were taken of different brands of still and unflavoured bottled water. The samples were analysed at the laboratory of the IGS, while the interpretation of the analysis was done by the Centre for Environmental Management.

“We wanted to evaluate the difference in quality for human consumption between tap water and that of the different brands of bottled water,” said Prof. Maitland Seaman, Head of the Centre for Environmental Management.

“With the exception of two samples produced by multinational companies at their plants in South Africa, the different brands of bottled water used for the study were produced by South African companies, including a local small-scale Bloemfontein producer,” said Prof. Seaman.

According to the labels, the sources of the water vary from pure spring water, to partial reverse osmosis (as an aid to standardise salt, i.e. mineral, content), to only reverse osmosis (to remove salts). (Reverse osmosis is a process in which water is forced under pressure through a pipe with minute pores through which water passes but no – or very low concentrations of – salts pass.)

According to Prof. Seaman, the analysis revealed some interesting findings, such as:

• It is generally accepted that drinking water should have an acceptable level of salt content, as the body needs salts. Most mineral contents were relatively higher in the tap water samples than the bottled water samples and were very much within the acceptable range of drinkable water quality. One of the bottled samples, however, had a very low mineral content, as the water was produced by reverse osmosis, as stated on the bottle. While reverse osmosis is used by various producers, most producers use it as an aid, not as a single method to remove nearly all the salts. Drinking only such water over a prolonged period may probably have a negative effect on the human physiology.

• The pH values of the tap water samples (8,12–8,40) were found to be slightly higher (slightly alkaline), like in all south-eastern Free State rivers (from where the water is sourced) than the pH of most of the bottled water samples, most of which are sourced and/or treated in other areas. Two brands of bottled water were found to have relatively low pH levels (both 4,5, i.e. acidic) as indicated on their bottles and as confirmed by the IGS analysis. The health implication of this range of pH is not significant.

• The analysis showed differences in the mineral content given on the labels of most of the water bottles compared to that found by IGS analysis. The possibility of seasonal fluctuation in content, depending on various factors, is expected and most of the bottling companies also indicate this on their labels. What was a rather interesting finding was that two pairs of bottled water brands claimed exactly the same mineral content but appeared under different brand names and were also priced differently. In each case, one of the pair was a well-known house brand, and the other obviously the original producer. In one of these paired cases, the house brand stated that the water was spring water, while the other (identical) “original” brand stated that it was spring water treated by reverse osmosis and oxygen-enriched.

• Nitrate (NO3) levels were uniformly low except in one bottled sample, suggesting a low (non-threatening) level of organic pollution in the source water. Otherwise, none of the water showed any sign of pollution.

• The bacterial analysis confirmed the absence of any traces of coliforms or E.coli in any of the samples, as was also indicated by the bottling companies. This is very reassuring. What is not known is how all these waters were sterilised, which could be anything from irradiation to chlorine or ozone treatment.

• The price of the different brands of bottled water, each containing 500 ml of still water, ranged between R3,99 and R8,99, with R5,03 being the average price. A comparison between the least expensive and the most expensive bottles of water indicated no significant difference in quality. In fact, discrepancies were observed in the most expensive bottle in that the amount of Calcium (Ca) claimed to be present in it was found to be significantly different from what the analysis indicated (29,6 mg/l versus 0,92 mg/l). The alkalinity (CaCO3 mg/l) indicated on the bottle was also found to differ considerably (83 mg/l versus 9,4 mg/l). The concentration of Total Dissolved Salts (TDS) was not given on the product.

“The preference for bottled water as compared to Bloemfontein’s tap water from a qualitative perspective as well as the price discrepancy is unjustifiable. The environmental footprint of bottled water is also large. Sourcing, treating, bottling, packaging and transporting, to mention but a few of the steps involved in the processing of bottled water, entail a huge carbon footprint, as well as a large water footprint, because it also requires water for treating and rinsing to process bottled water,” said Prof. Seaman.

Media Release
Lacea Loader
Deputy Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
3 August 2009

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept