Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 September 2023 | Story André Damons | Photo Supplied
radiation dose distribution
The patient is still under anaesthesia, the placement of the brachytherapy applicators is completed, and they are connected to the Iridium source for the radiation to be given.

Medical personnel at the Universitas Academic Hospital and the University of the Free State (UFS) in Bloemfontein became the first in Southern Africa to use Interstitial brachytherapy as a method for treating cervical cancer. 

A multidisciplinary team, consisting of an anaesthetist, clinical oncologists, application specialists, medical physicists, radiation therapy radiographers and professional nurses, completed the first interstitial cervical cancer brachytherapy in Southern Africa at Universitas Academic Complex in June this year.

Prof Alicia Sherriff, Head of the UFS Department of Oncology and a clinical oncologist, explained: “Brachytherapy is a method of internal radiation therapy, where a source of radiation is placed inside or near the cancer. This type of radiation travels only a short distance and makes it possible to deliver curative doses to the cancer while staying within the tolerance of the surrounding bladder, rectum, and small bowel.” 

She further emphasised that intracavitary brachytherapy has been an essential component of the curative management of cervical cancer since 1938.

According to her, feasibility studies were published for the use of applicators that combine intracavitary and interstitial brachytherapy in 2006. In 2014 prospective clinical trials started reflecting on the clinical value to improve local control for the locally advanced cervical cancers with combining intracavitary and interstitial brachytherapy to get higher doses of radiation where the cancer has grown outside of the cervix. Interstitial brachytherapy where the applicators are placed into the tissue with cancer are also used in prostate and breast cancer. 

Second-most common cancer in South African women

As per the Catalan Institute of Oncology (ICO) and the International Agency for Research on Cancer (IARC) information Centre on Human Papilloma Virus and cancer publication of March 2023, the current new diagnoses of cervical cancer annually in South Africa are 10,702 with 5,870 patients passing away annually due to cervical cancer. It is the second-most common cancer in women in South Africa and the most common among women between 15 and 44. Due to late/delayed presentation and diagnoses most cervical cancer patients seen have more advanced stages where the cancer has infiltrated outside of the cervix into the surrounding tissue.

“At the Universitas Academic Complex we have been approaching cervical brachytherapy with CT (Computer Tomography)-based image guidance for more than a decade already and the past five years we have been doing Adaptive CT-based image guided brachytherapy. 

“This means that with each brachytherapy treatment the cancer and all the surrounding normal organs are delineated based on a new CT image to ensure that we consider how the cancer has shrunk from one brachytherapy to the next and to see how we can limit the dose to the surrounding organs but at the same time achieve the highest possible dose of radiation with each treatment,” says Prof Sherriff. 

Planning to expand the use to other cancers

The intracavitary brachytherapy applicators which are used most frequently are placed within the cervix and uterus and deliver high doses there but cannot address the infiltration into the surrounding tissue adequately, she continued. “That is where these additional needles that are placed via the Venezia applicator into the surrounding tissue give the ability to also reach those areas with high-dose radiation while sparing the organs.”

Prof Sherriff explained that the interstitial brachytherapy does add additional time, expertise and logistical planning to the management and would not be utilised for all cervical cancer patients, but for those patients with locally advanced disease whose general health would support a more aggressive approach. The other academic training institutions are aiming to add interstitial brachytherapy to their platforms as well as at the UFS which is also planning to expand the use to other cancers. 

Save more lives

The MEC for Health in the Free State province, Mathabo Leeto, has congratulated medical professionals on this groundbreaking medical intervention. 

She said this breakthrough is in line with goals set by the United Nations in not only the provision of quality health services, but also and importantly, saving lives.

“This milestone is responsive to our targets for improvement of women’s health and reducing mortality. It is responsive also to Goal 3 of the United Nations’ Sustainable Development Goals which seeks to reduce global maternal mortality ratio, ensure universal access to sexual and reproductive health-care services, including for family planning, information and education, and the integration of reproductive health into national strategies and programmes,” she said.

“Hopefully this breakthrough will help us save many more lives. I wish to congratulate everyone who contributed to this innovative way of cancer treatment and assure you that your province and the people are indebted to you,” concluded Leeto.

 


The medical staff who were involved in the first interstitial cervical cancer brachytherapy in Southern Africa were, from left: Dr Marnus Booyens (Anaesthetist); Dr Karin Vorster (Head Clinical unit and Clinical Oncologist); Dr Willie Shaw (Head of Medical Physics for the division of Radiation Oncology); Khalil Ben Fredj (Application Specialist ELEKTA for the TIMEA region and medical physicist); Prof Alicia Sherriff (HOD Oncology and clinical oncologist); Dr Dedri O’Reilly(medical physicist); Chantel Stroebel (Radiation therapy radiographer at brachytherapy); Dr Lourens Strauss (Medical physicist); Karl Sachse (Medical physicist); Sr Angelique Engelbrecht (professional nurse); Marga Claassen (Clinical and Commercial Account Specialist, SA for Elekta and Medical physicist).

News Archive

Stem cell research and human cloning: legal and ethical focal points
2004-07-29

   

(Summary of the inaugural lecture of Prof Hennie Oosthuizen, from the Department of Criminal and Medical Law at the Faculty of Law of the University of the Free State.)

 

In the light of stem cell research, research on embryo’s and human cloning it will be fatal for legal advisors and researchers in South Africa to ignore the benefits that new bio-medical development, through research, contain for this country.

Legal advisors across the world have various views on stem cell research and human cloning. In the USA there is no legislation that regulates stem cell research but a number of States adopted legislation that approves stem cell research. The British Parlement gave permission for research on embryonic stem cells, but determined that it must be monitored closely and the European Union is of the opinion that it will open a door for race purification and commercial exploitation of human beings.

In South Africa the Bill on National Health makes provision for therapeutical and non therapeutical research. It also makes provision for therapeutical embryonical stem cell research on fetuses, which is not older than 14 days, as well as for therapeutical cloning under certain circumstances subject to the approval of the Minister. The Bill prohibits reproductive cloning.

Research on human embrio’s is a very controversial issue, here and in the rest of the world.

Researchers believe that the use of stem cell therapy could help to side-step the rejection of newly transplanted organs and tissue and if a bank for stem cell could be built, the shortage of organs for transplants would become something of the past. Stem cells could also be used for healing of Alzheimer’s, Parkinson’s and spinal injuries.

Sources from which stem cells are obtained could also lead to further ethical issues. Stem cells are harvested from mature human cells and embryonic stem cells. Another source to be utilised is to take egg cells from the ovaries of aborted fetuses. This will be morally unacceptable for those against abortions. Linking a financial incentive to that could become more of a controversial issue because the woman’s decision to abort could be influenced. The ideal would be to rather use human fetus tissue from spontaneous abortions or extra-uterine pregnancies than induced abortions.

The potential to obtain stem cells from the blood of the umbilical cord, bone-marrow and fetus tissue and for these cells to arrange themselves is known for quite some time. Blood from the umbilical cord contains many stem cells, which is the origin of the body’s immune and blood system. It is beneficial to bank the blood of a newborn baby’s umbilical cord. Through stem cell transplants the baby or another family member’s life could be saved from future illnesses such as anemia, leukemia and metabolic storing disabilities as well as certain generic immuno disabilities.

The possibility to withdraw stem cells from human embrio’s and to grow them is more useable because it has more treatment possibilities.

With the birth of Dolly the sheep, communities strongly expressed their concern about the possibility that a new cloning technique such as the replacement of the core of a cell will be used in human reproduction. Embryonic splitting and core replacement are two well known techniques that are associated with the cloning process.

I differentiate between reproductive cloning – to create a cloned human embryo with the aim to bring about a pregnancy of a child that is identical to another individual – and therapeutically cloning – to create a cloned human embryo for research purposes and for healing human illnesses.

Worldwide people are debating whether to proceed with therapeutical cloning. There are people for and against it. The biggest ethical objection against therapeutical cloning is the termination of the development of a potential human being.

Children born from cloning will differ from each other. Factors such as the uterus environment and the environment in which the child is growing up will play a role. Cloning create unique children that will grow up to be unique individuals, just like me and you that will develop into a person, just like you and me. If we understand this scientific fact, most arguments against human cloning will disappear.

Infertility can be treated through in vitro conception. This process does not work for everyone. For some cloning is a revolutionary treatment method because it is the only method that does not require patients to produce sperm and egg cells. The same arguments that were used against in vitro conception in the past are now being used against cloning. It is years later and in vitro cloning is generally applied and accepted by society. I am of the opinion that the same will happen with regard to human cloning.

There is an argument that cloning must be prohibited because it is unsafe. Distorted ideas in this regard were proven wrong. Are these distorted ideas justified to question the safety of cloning and the cloning process you may ask. The answer, according to me, is a definite no. Human cloning does have many advantages. That includes assistance with infertility, prevention of Down Syndrome and recovery from leukemia.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept