Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
29 April 2024 | Story Valentino Ndaba | Photo Supplied
Protection Services Crime and Incident Investigation Proceedure
The UFS Crime and Incident Investigation Procedure is committed to maintaining campus safety.

In alignment to its strategic Vision 130 of fostering a safe and secure environment for all staff and students, the University of the Free State (UFS) introduced a robust Crime and Incident Investigation Procedure. This initiative underscores the institution's commitment to upholding its values of integrity, accountability, and excellence, while ensuring the well-being of its diverse community.

Jacobus van Jaarsveld, Deputy Director at Protection Services, highlighted the importance of this procedural framework, stating: “Our aim is to establish a culture of safety and accountability within the university community. By implementing this procedure, we are reaffirming our dedication to prompt and thorough investigations of all reported incidents.”

Comprehensive coverage and scope

The Procedure encompasses all UFS students, staff members, visitors, contractors, and service providers across multiple campuses and satellite sites. It addresses incidents occurring both on-campus and off-campus if they affect the university’s reputation or assets.

Ethical and professional investigations

All investigations are conducted with professionalism, impartiality, and adherence to legal and ethical standards. The principle of “innocent until proven guilty” is upheld, respecting the rights and freedoms of all individuals involved.

Students, staff members, and other stakeholders are obligated to familiarise themselves with the Procedure, promptly report incidents, cooperate with investigators, and comply with university policies and codes of conduct.

Inclusive and collaborative approach

The Procedure emphasises the importance of inclusivity, ensuring that investigative processes accommodate the needs of individuals with disabilities. It also highlights the establishment of interdepartmental service level agreements to facilitate collaboration and information-sharing among relevant departments.

Continuous improvement and monitoring

The UFS will monitor reported incidents through regular updates and crime overviews. Additionally, ongoing evaluation and refinement of the Procedure will be based on crime statistics, security risk assessments, and best practices in investigative management.

In conclusion, the implementation of the Crime and Incident Investigation Procedure represents a significant step forward in the UFS’s ongoing efforts to create a safe, supportive, and conducive environment for learning, teaching, and research. Through proactive measures and steadfast adherence to principles of integrity and accountability, the university reaffirms its commitment to excellence in all aspects of university life.

Report crime

Bloemfontein Campus Protection Services: +27 51 401 2911 or +27 51 401 2634
South Campus Protection Services: +27 51 505 1217 
Qwaqwa Campus Protection Services: +27 58 718 5460 or +27 58 718 5175

Click here to download the Crime and Incident Investigation Procedure booklet and watch the video below.

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept