Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
29 April 2024 | Story Valentino Ndaba | Photo Supplied
Protection Services Crime and Incident Investigation Proceedure
The UFS Crime and Incident Investigation Procedure is committed to maintaining campus safety.

In alignment to its strategic Vision 130 of fostering a safe and secure environment for all staff and students, the University of the Free State (UFS) introduced a robust Crime and Incident Investigation Procedure. This initiative underscores the institution's commitment to upholding its values of integrity, accountability, and excellence, while ensuring the well-being of its diverse community.

Jacobus van Jaarsveld, Deputy Director at Protection Services, highlighted the importance of this procedural framework, stating: “Our aim is to establish a culture of safety and accountability within the university community. By implementing this procedure, we are reaffirming our dedication to prompt and thorough investigations of all reported incidents.”

Comprehensive coverage and scope

The Procedure encompasses all UFS students, staff members, visitors, contractors, and service providers across multiple campuses and satellite sites. It addresses incidents occurring both on-campus and off-campus if they affect the university’s reputation or assets.

Ethical and professional investigations

All investigations are conducted with professionalism, impartiality, and adherence to legal and ethical standards. The principle of “innocent until proven guilty” is upheld, respecting the rights and freedoms of all individuals involved.

Students, staff members, and other stakeholders are obligated to familiarise themselves with the Procedure, promptly report incidents, cooperate with investigators, and comply with university policies and codes of conduct.

Inclusive and collaborative approach

The Procedure emphasises the importance of inclusivity, ensuring that investigative processes accommodate the needs of individuals with disabilities. It also highlights the establishment of interdepartmental service level agreements to facilitate collaboration and information-sharing among relevant departments.

Continuous improvement and monitoring

The UFS will monitor reported incidents through regular updates and crime overviews. Additionally, ongoing evaluation and refinement of the Procedure will be based on crime statistics, security risk assessments, and best practices in investigative management.

In conclusion, the implementation of the Crime and Incident Investigation Procedure represents a significant step forward in the UFS’s ongoing efforts to create a safe, supportive, and conducive environment for learning, teaching, and research. Through proactive measures and steadfast adherence to principles of integrity and accountability, the university reaffirms its commitment to excellence in all aspects of university life.

Report crime

Bloemfontein Campus Protection Services: +27 51 401 2911 or +27 51 401 2634
South Campus Protection Services: +27 51 505 1217 
Qwaqwa Campus Protection Services: +27 58 718 5460 or +27 58 718 5175

Click here to download the Crime and Incident Investigation Procedure booklet and watch the video below.

News Archive

Link between champagne bubbles and the UFS?
2012-11-16

Prof. Lodewyk Kock with an example of a front page of the publication FEMS Yeast Research, as adapted by F. Belliard, FEMS Central Office.
Photo: Leatitia Pienaar
15 November 2012

What is the link between the bubbles in champagne and breakthrough research being done at the Mayo Clinic in America? Nano research being done at our university.

Prof. Lodewyk Kock of Biotechnology says a human being consists of millions of minute cells that are invisible to the eye. The nano technology team at the UFS have developed a technique that allows researchers to look into such a cell, as well as other microorganisms. In this way, they can get an idea of what the cell’s “insides” look like.

The UFS team – consisting of Profs. Kock, Hendrik Swart (Physics), Pieter van Wyk (Centre for Microscopy), as well as Dr Chantel Swart (Biotechnology), Dr Carlien Pohl (Biotechnology) and Liza Coetsee (Physics) – were amazed to see that the inside of cells consist of a maze of small tunnels or blisters. Each tunnel is about 100 and more nanometres in diameter – about one ten thousandth of a millimetre – that weaves through the cells in a maze.

It was also found that these tunnels are the “lungs” of the cells. Academics doing research on yeast have had to sit up and take notice of the research being done at the UFS – to the extent that these “lungs” will appear on the front page of the highly acclaimed FEMS Yeast Research for all of 2013.

The Mayo Clinic, in particular, now wants to work with the UFS to study cancer cells in more detail in order to fight this disease, says Prof. Kock. The National Cancer Institute of America has also shown interest. This new nano technology for biology can assist in the study and development of nano medicine that can be used in the treatment of cancer and other life threatening diseases. Nano medicine uses nano metal participles that are up to one billionth of a metre in size.

Prof. Kock says laboratory tests indicate that nano medicine can improve the efficacy of anti-cancer medicine, which makes the treatment less toxic. “According to the Mayo Clinic team, nano particles are considered as a gold cartridge which is being fired directly at a cancer tumour. This is compared to fine shot that spreads through the body and also attacks healthy cells.”

“This accuracy implies that the chemotherapy dose can be lowered with fewer side effects. The Mayo Clinic found that one-tenth of the normal dosage is more effective against pancreas cancer in this way than the full dosage with a linkage to nano particles. According to the clinic, this nano medicine could also delay the spread of cancer,” says Prof. Kock.

The nano particles are used as messengers that convey anti-cancer treatment to cancer cells, where it then selectively kills the cancer cells. The transport and transfer of these medicines with regard to gold nano particles can be traced with the UFS’s nano technology to collect more information, especially where it works on the cell.

“With the new nano technology of the UFS, it is possible to do nano surgery on the cells by slicing the cells in nanometre thin slices while the working of the nano medicine is studied. In this way, it can be established if the nano medicine penetrates the cells or if it is only associated with the tiny tunnels,” says Prof. Kock.

And in champagne the small “lungs” are responsible for the bubbles. The same applies to beer and with this discovery a whole new reach field opens for scientists.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept