Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
29 April 2024 | Story Valentino Ndaba | Photo Supplied
Protection Services Crime and Incident Investigation Proceedure
The UFS Crime and Incident Investigation Procedure is committed to maintaining campus safety.

In alignment to its strategic Vision 130 of fostering a safe and secure environment for all staff and students, the University of the Free State (UFS) introduced a robust Crime and Incident Investigation Procedure. This initiative underscores the institution's commitment to upholding its values of integrity, accountability, and excellence, while ensuring the well-being of its diverse community.

Jacobus van Jaarsveld, Deputy Director at Protection Services, highlighted the importance of this procedural framework, stating: “Our aim is to establish a culture of safety and accountability within the university community. By implementing this procedure, we are reaffirming our dedication to prompt and thorough investigations of all reported incidents.”

Comprehensive coverage and scope

The Procedure encompasses all UFS students, staff members, visitors, contractors, and service providers across multiple campuses and satellite sites. It addresses incidents occurring both on-campus and off-campus if they affect the university’s reputation or assets.

Ethical and professional investigations

All investigations are conducted with professionalism, impartiality, and adherence to legal and ethical standards. The principle of “innocent until proven guilty” is upheld, respecting the rights and freedoms of all individuals involved.

Students, staff members, and other stakeholders are obligated to familiarise themselves with the Procedure, promptly report incidents, cooperate with investigators, and comply with university policies and codes of conduct.

Inclusive and collaborative approach

The Procedure emphasises the importance of inclusivity, ensuring that investigative processes accommodate the needs of individuals with disabilities. It also highlights the establishment of interdepartmental service level agreements to facilitate collaboration and information-sharing among relevant departments.

Continuous improvement and monitoring

The UFS will monitor reported incidents through regular updates and crime overviews. Additionally, ongoing evaluation and refinement of the Procedure will be based on crime statistics, security risk assessments, and best practices in investigative management.

In conclusion, the implementation of the Crime and Incident Investigation Procedure represents a significant step forward in the UFS’s ongoing efforts to create a safe, supportive, and conducive environment for learning, teaching, and research. Through proactive measures and steadfast adherence to principles of integrity and accountability, the university reaffirms its commitment to excellence in all aspects of university life.

Report crime

Bloemfontein Campus Protection Services: +27 51 401 2911 or +27 51 401 2634
South Campus Protection Services: +27 51 505 1217 
Qwaqwa Campus Protection Services: +27 58 718 5460 or +27 58 718 5175

Click here to download the Crime and Incident Investigation Procedure booklet and watch the video below.

News Archive

Discovery in Scorpius constellation may signify clean energy for Earth
2017-01-23

 Description: Discovery in Scorpius constellation may signify clean energy for Earth Tags: Discovery in Scorpius constellation may signify clean energy for Earth

Earlier this year, a group of international astronomers
announced the discovery of an exotic binary star system,
AR Scorpii. The system is in the Scorpius constellation.
Photos: Supplied

See article on Nature’s website 

In future, stargazers and astronomers will look at the Scorpius constellation near the Milky Way with new eyes. Earlier this year, a group of international astronomers announced the discovery of an exotic binary star system, AR Scorpii. The system is in the Scorpius constellation.

Prof Pieter Meintjes, researcher in the Department of Physics at the University of the Free State (UFS), worked with four colleagues on what he describes as a “wonderful discovery”. This sensational discovery, which could lead to the production of cleaner energy on Earth, will be published in the research journal, Nature, early in 2017.

Model developed to interpret new set of measurements
The exotic binary star which was discovered consists of a red dwarf and a white dwarf revolving around each other every 3,5 hours. The binary system showed very prominent pulsations of 117 and 118 seconds respectively. The pulsations can be explained by a bundle radiation produced by the white dwarf star.

“These new observations have shown that the radiation is strongly polarised, a sign that we are dealing with synchrotron radiation here. Synchrotron radiation is produced by electrons accelerated to extremely high energy levels in the magnetic field of the white dwarf star,” says Prof Meintjes.

He developed a theoretical model to interpret a new set of measurements that was taken by the 1,9 m telescope and the 10 m SALT telescope at the South African Astronomical Observatory (SAA0).

Totally unique phenomenon could contribute to energy production on Earth
“I further indicated that the interaction between the magnetic fields of the white dwarf star and the red dwarf star induces secondary processes that specifically describe the behaviour of the radiation in the radio band and infrared band accurately. AR Sco is the first white-red dwarf binary system of which all the pulsated radiation could be explained by the synchrotron process, which is totally unique,” says Prof Meintjes.

According to Prof Meintjes, the value of the model lies in the fact that the processes which produce the radiation in AR Sco, can also be applied to produce energy on Earth.

 

Plasma reactors are based on roughly the same processes which apply in AR Sco, and with refining, it could be utilised to generate electricity in future. This will be much cleaner than nuclear energy.

 

The model developed by Prof Meintjes explains all the radiation in the system – from radio waves to X-rays – in terms of electrons accelerated to extremely high energy levels by electric fields in the system, which then produce synchrotron radiation over a very wide band of the electromagnetic spectrum.

Prof Meintjes is currently working on a follow-up article examining the evolution of the AR Sco, in other words, the origin of such a unique system and the final state towards which it is evolving. “My vision for the immediate future is therefore to develop a model for the evolution of the source concerned,” he says.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept