Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
19 April 2024 | Story André Damons | Photo Charl Devenish
Dr Nashua Naicker
Dr Nashua Naicker, lecturer and Chairperson: Learning and Teaching Committee (SoHRS) in the Department of Optometry, UFS School of Health and Rehabilitation Sciences, graduated on Thursday (April 18) with the degree Doctor of Philosophy in Health Professions Education.

A strong need to improve the general standing of optometry as a profession and to create lifelong learning opportunities for locally trained optometrists beyond what currently exists, is what led Dr Nashua Naicker to pursue a PhD in this field.

Dr Naicker, lecturer, and Chairperson: Learning and Teaching Committee (SoHRS) in the Department of Optometry, UFS School of Health and Rehabilitation Sciences, says he feels an overwhelming sense of relief with a keen sense accomplishment by achieving what he set out to through persistence in the face of adversity.

He graduated on Thursday (18 April) at the Faculty of Health Sciences April graduation ceremony with the degree Doctor of Philosophy in Health Professions Education through the Division of Health Sciences Education. “I am pleased and hope to change the narrative on this new path as an accredited researcher from ‘how long are you going to take to finish?’ to ‘what have you learnt in this journey?’. We are far too focused on chasing a timeline rather than focusing on the contribution that one makes and the self-development in this journey of discovery,” says Dr Naicker. 

His supervisor was Prof Alvin J Munsamy from University of KwaZulu-Natal (UKZN) and co-supervisor Dr CB Written from the UFS.  

Need for educational expansion

His research was focused on establishing a framework for postgraduate programmes in specialty fields of optometry for South Africa. The investigation was carried out with practising optometrists as the primary stakeholders and with optometric academics as the custodians for education and training in the country.

“With an overwhelming need for educational expansion found in this investigation, a conceptual framework was proposed as the innovation to take the profession forward in South Africa. Improving patient care from being upskilled and receiving professional recognition for the additional competencies and proficiencies that would be gained, was the motivating factors identified by optometrists to consider further education and training,” says Dr Naicker.

According to him, being in the educational fraternity for almost two decades and as a former education committee member of the professional board of optometry, he was able to see where the shortcomings were in the profession which set him on this path to pursue this research. With most optometrists in clinical practice and no clinical postgraduate qualifications available except pure research-based qualifications in SA, Dr Naicker explains that this hindered optometrists’ professional trajectory and career path opportunities into various special interest areas. 

“By developing a framework for horizontal articulation pathways towards coursework postgraduate qualifications in various clinical specialty fields, this would be the contribution in addressing the educational gap that would guide higher education institutions in their programme development process. The beneficiaries of this expansion would not only be the health professionals but the patients who access optometric care from the optometrists who would have advanced skills and competencies to deliver comprehensive eye care services.”

Stayed motivated

Dr Naicker says the journey to his PhD was challenging from the outset as the country went into hard lockdown due the COVID-19 pandemic just five weeks after he registered for his PhD. Working on a PhD was not a priority at the time when your survival and that of your loved ones was uncertain as thousands of people fell victim to the coronavirus. Further to this, he continues, multiple changes to his supervisory team and the overhaul and revitalisation of the administration and management of the UFS Division of Health Sciences Education, also impacted his progress in his doctoral research at that time. He had felt despondent after a year of being registered when stability arrived with supervisory assistance that re-ignited his drive to pick up the slack and keep moving forward.

“The words ‘push through it’ were verbalised to me by a stranger I met in passing.  While chatting about research I found those three words to be so profound and with such depth that they resonated with my experience of facing adversity but remaining vigilant to preservere and not drop the baton in the race against time to conclude my research. Gaslighting yourself and questioning your potential to complete a PhD only compounds your procrastination which was all too apparent. The goal is to rise above the self-doubt, brush off the devil with the fork sitting on your shoulder and just ‘push through it’.”

Dr Naicker, who is currently supervising four master’s of optometry students in their research undertaking, as well as undergraduate research projects, says he is in the process of publishing the research manuscripts generated from his PhD and is also part of a task team with the professional Board of Optometry for setting up the board exams for foreign-qualified optometrists. He would also like to work on research involving educating the educators of visually impaired learners.

News Archive

Nuclear Medicine on the forefront of cancer research
2017-07-10

Description: Nuclear Medicine on the forefront of cancer research Tags: Nuclear Medicine, cancer research, Dr Je’nine Horn-Lodewyk’s, tumour detection method, cancer, Department of Nuclear Medicine 

Dr Je’nine Horn-Lodewyk’s tumour detection method
could be the cost-effective breakthrough needed to decrease
the mortality rate in breast cancer patients.
Photo: Anja Aucamp

The field of Nuclear Medicine in South Africa and the rest of the world are expanding rapidly due to the development of hybrid cameras and new radiopharmaceuticals. These developments have a huge impact on the diagnosis and therapy of cancer.

The most advanced of these cameras, Positron emission tomography combined with normal CTs (PETCT), are not yet widely available in South Africa due to the cost of the cameras and the radiopharmaceuticals. A more cost-effective alternative can be of great benefit. To achieve this, the focus should be on developing new radiopharmaceuticals that can be used with the current cost-effective gamma cameras, according to University of the Free State researcher, Dr Je’nine Horn-Lodewyk from the Department of Nuclear Medicine.

Fluorodeoxyglucose (18F-FDG), a radiolabelled glucose analogue, is currently the radiopharmaceutical most commonly used in PET/CT imaging for mainly oncology indications. Although it is considered the gold standard for imaging in several malignancies, it does have certain disadvantages. An 18F-FDG PET/CT diagnostic imaging study can cost between R25 000 and R35 000 for a single patient in the private sector. The 18F-FDG is also more radioactive, which requires much stricter handling and shielding to avoid high radiation dosages to staff and patients.

Successful research potential innovative solution
In the search for the ideal radiopharmaceutical for tumour detection, the South African National Nuclear Energy Corporation (Necsa) developed a local synthesis process for ethylenedicysteine-deoxyglucose (EC-DG). EC-DG is also a glucose analogue similar to FDG. They succeeded in labelling the compound with Technetium-99-metastable-pertechnetate (99mTcO4-), the most common nuclear medicine isotope used for approximately 95% of nuclear medicine procedures, creating 99mTc-EC-DG.

In partnership with Dr Horn-Lodewyk, this compound was successfully used in various animal models and clinical scenarios, resulting in approval by the Medicine Control Council to use it in a human study. Research is also planned in order to investigate diagnostic accuracy in other cancers like lymphoma.  The end result of this research can produce a radiopharmaceutical that is cost effective, does not require the use of costly specialised equipment, has no significant side-effects, no special patient preparation, renders late imaging possible, and has decreased radiation risks.

Dr Horn-Lodewyk is grateful for the support of her mentor, Prof Anton Otto, as well as Dr Gert Engelbrecht, Head of the Department of Nuclear Medicine, Prof Jan Rijn Zeevaart from North-West University’s Preclinical Drug Development Platform and Necsa, and Judith Wagener from Necsa. This innovative research would also not have been possible without the financial assistance of Dr Glen Taylor and Eleanor van der Westhuizen in the Directorate of Research Development.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept