Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
19 April 2024 | Story André Damons | Photo Charl Devenish
Dr Nashua Naicker
Dr Nashua Naicker, lecturer and Chairperson: Learning and Teaching Committee (SoHRS) in the Department of Optometry, UFS School of Health and Rehabilitation Sciences, graduated on Thursday (April 18) with the degree Doctor of Philosophy in Health Professions Education.

A strong need to improve the general standing of optometry as a profession and to create lifelong learning opportunities for locally trained optometrists beyond what currently exists, is what led Dr Nashua Naicker to pursue a PhD in this field.

Dr Naicker, lecturer, and Chairperson: Learning and Teaching Committee (SoHRS) in the Department of Optometry, UFS School of Health and Rehabilitation Sciences, says he feels an overwhelming sense of relief with a keen sense accomplishment by achieving what he set out to through persistence in the face of adversity.

He graduated on Thursday (18 April) at the Faculty of Health Sciences April graduation ceremony with the degree Doctor of Philosophy in Health Professions Education through the Division of Health Sciences Education. “I am pleased and hope to change the narrative on this new path as an accredited researcher from ‘how long are you going to take to finish?’ to ‘what have you learnt in this journey?’. We are far too focused on chasing a timeline rather than focusing on the contribution that one makes and the self-development in this journey of discovery,” says Dr Naicker. 

His supervisor was Prof Alvin J Munsamy from University of KwaZulu-Natal (UKZN) and co-supervisor Dr CB Written from the UFS.  

Need for educational expansion

His research was focused on establishing a framework for postgraduate programmes in specialty fields of optometry for South Africa. The investigation was carried out with practising optometrists as the primary stakeholders and with optometric academics as the custodians for education and training in the country.

“With an overwhelming need for educational expansion found in this investigation, a conceptual framework was proposed as the innovation to take the profession forward in South Africa. Improving patient care from being upskilled and receiving professional recognition for the additional competencies and proficiencies that would be gained, was the motivating factors identified by optometrists to consider further education and training,” says Dr Naicker.

According to him, being in the educational fraternity for almost two decades and as a former education committee member of the professional board of optometry, he was able to see where the shortcomings were in the profession which set him on this path to pursue this research. With most optometrists in clinical practice and no clinical postgraduate qualifications available except pure research-based qualifications in SA, Dr Naicker explains that this hindered optometrists’ professional trajectory and career path opportunities into various special interest areas. 

“By developing a framework for horizontal articulation pathways towards coursework postgraduate qualifications in various clinical specialty fields, this would be the contribution in addressing the educational gap that would guide higher education institutions in their programme development process. The beneficiaries of this expansion would not only be the health professionals but the patients who access optometric care from the optometrists who would have advanced skills and competencies to deliver comprehensive eye care services.”

Stayed motivated

Dr Naicker says the journey to his PhD was challenging from the outset as the country went into hard lockdown due the COVID-19 pandemic just five weeks after he registered for his PhD. Working on a PhD was not a priority at the time when your survival and that of your loved ones was uncertain as thousands of people fell victim to the coronavirus. Further to this, he continues, multiple changes to his supervisory team and the overhaul and revitalisation of the administration and management of the UFS Division of Health Sciences Education, also impacted his progress in his doctoral research at that time. He had felt despondent after a year of being registered when stability arrived with supervisory assistance that re-ignited his drive to pick up the slack and keep moving forward.

“The words ‘push through it’ were verbalised to me by a stranger I met in passing.  While chatting about research I found those three words to be so profound and with such depth that they resonated with my experience of facing adversity but remaining vigilant to preservere and not drop the baton in the race against time to conclude my research. Gaslighting yourself and questioning your potential to complete a PhD only compounds your procrastination which was all too apparent. The goal is to rise above the self-doubt, brush off the devil with the fork sitting on your shoulder and just ‘push through it’.”

Dr Naicker, who is currently supervising four master’s of optometry students in their research undertaking, as well as undergraduate research projects, says he is in the process of publishing the research manuscripts generated from his PhD and is also part of a task team with the professional Board of Optometry for setting up the board exams for foreign-qualified optometrists. He would also like to work on research involving educating the educators of visually impaired learners.

News Archive

NRF grants of millions for Kovsie professors
2013-05-20

 

Prof Martin Ntwaeaborwa (left) and Prof Bennie Viljoen
20 May 2013


Two professors received research grants from the National Research Foundation (NRF). The money will be used for the purchase of equipment to add more value to their research and take the university further in specific research fields.

Prof Martin Ntwaeaborwa from the Department of Physics has received a R10 million award, following a successful application to the National Nanotechnology Equipment Programme (NNEP) of the NRF for a high-resolution field emission scanning electron microscope (SEM) with integrated cathodoluminescence (CL) and energy dispersive X-ray spectrometers (EDS).

Prof Bennie Viljoen from the Department of Microbial, Biochemical and Food Biotechnology has also been awarded R1,171 million, following a successful application to the Research Infrastructure Support Programme (RISP) for the purchase of a LECO CHN628 Series Elemental Analyser with a Sulphur add-on module.

Prof Ntwaeaborwa says the SEM-CL-EDS’ state-of-the art equipment combines three different techniques in one and it is capable of analysing a variety of materials ranging from bulk to individual nanoparticles. This combination is the first of its kind in Africa. This equipment is specifically designed for nanotechnology and can analyse particles as small as 5nm in diameter, a scale which the old tungsten SEM at the Centre of Microscopy cannot achieve.

The equipment will be used to simultaneously analyse the shapes and sizes of submicron particles, chemical composition and cathodoluminescence properties of materials. The SEM-CL-EDS is a multi-user facility and it will be used for multi- and interdisciplinary research involving physics, chemistry, materials science, life sciences and geological sciences. It will be housed at the Centre of Microscopy.
“I have no doubt that this equipment is going to give our university a great leap forward in research in the fields of electron microscopy and cathodoluminescence,” Prof Ntwaeaborwa said.

Prof Viljoen says the analyser is used to determine nitrogen, carbon/nitrogen, and carbon/hydrogen/nitrogen in organic matrices. The instrument utilises a combustion technique and provides a result within 4,5 minutes for all the elements being determined. In addition to the above, the machine also offers a sulphur add-on module which provides sulphur analysis for any element combination. The CHN 628 S module is specifically designed to determine the sulphur content in a wide variety of organic materials such as coal and fuel oils, as well as some inorganic materials such as soil, cement and limestone.

The necessity of environmental protection has stimulated the development of various methods, allowing the determination of different pollutants in the natural environment, including methods for determining inorganic nitrogen ions, carbon and sulphur. Many of the methods used so far have proven insufficiently sensitive, selective or inaccurate. The availability of the LECO analyser in a research programme on environmental pollution/ food security will facilitate accurate and rapid quantification of these elements. Ions in water, waste water, air, food products and other complex matrix samples have become a major problem and studies are showing that these pollutants are likely to cause severe declines in native plant communities and eventually food security.

“With the addition of the analyser, we will be able to identify these polluted areas, including air, water and land pollution, in an attempt to enhance food security,” Viljoen said. “Excess levels of nitrogen and phosphorous wreaking havoc on human health and food security, will be investigated.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept