Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
19 April 2024 | Story André Damons | Photo Charl Devenish
Dr Nashua Naicker
Dr Nashua Naicker, lecturer and Chairperson: Learning and Teaching Committee (SoHRS) in the Department of Optometry, UFS School of Health and Rehabilitation Sciences, graduated on Thursday (April 18) with the degree Doctor of Philosophy in Health Professions Education.

A strong need to improve the general standing of optometry as a profession and to create lifelong learning opportunities for locally trained optometrists beyond what currently exists, is what led Dr Nashua Naicker to pursue a PhD in this field.

Dr Naicker, lecturer, and Chairperson: Learning and Teaching Committee (SoHRS) in the Department of Optometry, UFS School of Health and Rehabilitation Sciences, says he feels an overwhelming sense of relief with a keen sense accomplishment by achieving what he set out to through persistence in the face of adversity.

He graduated on Thursday (18 April) at the Faculty of Health Sciences April graduation ceremony with the degree Doctor of Philosophy in Health Professions Education through the Division of Health Sciences Education. “I am pleased and hope to change the narrative on this new path as an accredited researcher from ‘how long are you going to take to finish?’ to ‘what have you learnt in this journey?’. We are far too focused on chasing a timeline rather than focusing on the contribution that one makes and the self-development in this journey of discovery,” says Dr Naicker. 

His supervisor was Prof Alvin J Munsamy from University of KwaZulu-Natal (UKZN) and co-supervisor Dr CB Written from the UFS.  

Need for educational expansion

His research was focused on establishing a framework for postgraduate programmes in specialty fields of optometry for South Africa. The investigation was carried out with practising optometrists as the primary stakeholders and with optometric academics as the custodians for education and training in the country.

“With an overwhelming need for educational expansion found in this investigation, a conceptual framework was proposed as the innovation to take the profession forward in South Africa. Improving patient care from being upskilled and receiving professional recognition for the additional competencies and proficiencies that would be gained, was the motivating factors identified by optometrists to consider further education and training,” says Dr Naicker.

According to him, being in the educational fraternity for almost two decades and as a former education committee member of the professional board of optometry, he was able to see where the shortcomings were in the profession which set him on this path to pursue this research. With most optometrists in clinical practice and no clinical postgraduate qualifications available except pure research-based qualifications in SA, Dr Naicker explains that this hindered optometrists’ professional trajectory and career path opportunities into various special interest areas. 

“By developing a framework for horizontal articulation pathways towards coursework postgraduate qualifications in various clinical specialty fields, this would be the contribution in addressing the educational gap that would guide higher education institutions in their programme development process. The beneficiaries of this expansion would not only be the health professionals but the patients who access optometric care from the optometrists who would have advanced skills and competencies to deliver comprehensive eye care services.”

Stayed motivated

Dr Naicker says the journey to his PhD was challenging from the outset as the country went into hard lockdown due the COVID-19 pandemic just five weeks after he registered for his PhD. Working on a PhD was not a priority at the time when your survival and that of your loved ones was uncertain as thousands of people fell victim to the coronavirus. Further to this, he continues, multiple changes to his supervisory team and the overhaul and revitalisation of the administration and management of the UFS Division of Health Sciences Education, also impacted his progress in his doctoral research at that time. He had felt despondent after a year of being registered when stability arrived with supervisory assistance that re-ignited his drive to pick up the slack and keep moving forward.

“The words ‘push through it’ were verbalised to me by a stranger I met in passing.  While chatting about research I found those three words to be so profound and with such depth that they resonated with my experience of facing adversity but remaining vigilant to preservere and not drop the baton in the race against time to conclude my research. Gaslighting yourself and questioning your potential to complete a PhD only compounds your procrastination which was all too apparent. The goal is to rise above the self-doubt, brush off the devil with the fork sitting on your shoulder and just ‘push through it’.”

Dr Naicker, who is currently supervising four master’s of optometry students in their research undertaking, as well as undergraduate research projects, says he is in the process of publishing the research manuscripts generated from his PhD and is also part of a task team with the professional Board of Optometry for setting up the board exams for foreign-qualified optometrists. He would also like to work on research involving educating the educators of visually impaired learners.

News Archive

UFS to host one of three world summits on crystallography
2014-04-15

 
Prof André Roodt from the Department of Chemistry at the University of the Free State (UFS), co-unveiled a special plaque in Poznan, Poland, as president of the European Crystallographic Association, with prof Gautam Desiraju, president of the IUCr (front right) and others to commemorate the Nobel prize winner Max von Laue. (Photo's: Milosz Ruszkowski, Grzegorz Dutkiewicz)

Prof André Roodt from the Department of Chemistry at the University of the Free State (UFS), co-unveiled a special plaque in Poznan, Poland, as president of the European Crystallographic Association, to commemorate the Nobel prize winner Max von Laue at a special Laue Symposium organised by prof Mariusz Jaskolski from the A. Mickiewicz University in Poznan.

Max von Laue, who spent his early childhood in Poznan, was the first scientist to diffract X-rays with a crystal.

2014 has been declared by the United Nations as the International Year of Crystallography, and it was recently officially opened at the UNESCO headquarters in Paris, France, by the Secretary-General of the UN, Ban Ki-moon. The International Year of Crystallography celebrates the centennial of the work of Max von Laue and the father and son, William Henry and William Laurence Bragg.

As part of the celebrations, Prof Roodt, president of the European Crystallographic Association, one of the three regional affiliates (Americas, Europe and Africa; Asia and Australasia) of the International Union of Crystallography (IUCr), was invited by the president of the IUCr, Prof Gautam Desiraju, to host one of the three world summits, wherein crystallography is to showcase its achievements and strategise for the future.

The summit and conference will take place on the Bloemfontein Campus of the UFS from 12 to 17 October 2014 and is titled: 'Crystallography as vehicle to promote science in Africa and beyond.' It is an ambitious meeting wherein it is anticipated to bring the French-, English- and Arab-speaking nations of Africa together to strategise how science can be expanded, and to offer possibilities for this as nestled in crystallography. Young and established scientists, and politicians associated with science and science management, are the target audience to be brought together in Bloemfontein.

Dr Thomas Auf der Heyde, acting Director General of the South African Department of Science and Technology (DST), has committed some R500 000 for this effort, while the International Union of Crystallography provided R170 000.

“Crystals and crystallography form an integrated part of our daily lives, form bones and teeth, to medicines and viruses, new catalysts, jewellery, colour pigments, chocolates, electronics, batteries, metal blades in airplane turbines, panels for solar energy and many more. In spite of this, unfortunately, not many people know much about X-ray crystallography, although it is probably one of the greatest innovations of the twentieth century. Determining the structure of the DNA was one of the most significant scientific events of the 20th century. It has helped understand how genetic messages are being passed on between cells inside our body – everything from the way instructions are sent to proteins to fight infections, to how life is reproduced.

“At the UFS, crystallography finds application in Chemistry, Physics, Biology, Mathematics, Geology, Engineering and the Medical fields. Crystallography is used by the Curiosity Rover, analysing the substances and minerals on Mars!

“The UFS’s Departments of Chemistry and Physics, in particular, have advanced instruments and important research thrusts wherein X-ray crystallography has formed a central part for more than 40 years.

“Crystallography has produced some 28 Nobel prize winners over the past 100 years and continues to provide the means for fundamental and applied research,” said Prof Roodt.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept