Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
19 April 2024 | Story André Damons | Photo Charl Devenish
Dr Nashua Naicker
Dr Nashua Naicker, lecturer and Chairperson: Learning and Teaching Committee (SoHRS) in the Department of Optometry, UFS School of Health and Rehabilitation Sciences, graduated on Thursday (April 18) with the degree Doctor of Philosophy in Health Professions Education.

A strong need to improve the general standing of optometry as a profession and to create lifelong learning opportunities for locally trained optometrists beyond what currently exists, is what led Dr Nashua Naicker to pursue a PhD in this field.

Dr Naicker, lecturer, and Chairperson: Learning and Teaching Committee (SoHRS) in the Department of Optometry, UFS School of Health and Rehabilitation Sciences, says he feels an overwhelming sense of relief with a keen sense accomplishment by achieving what he set out to through persistence in the face of adversity.

He graduated on Thursday (18 April) at the Faculty of Health Sciences April graduation ceremony with the degree Doctor of Philosophy in Health Professions Education through the Division of Health Sciences Education. “I am pleased and hope to change the narrative on this new path as an accredited researcher from ‘how long are you going to take to finish?’ to ‘what have you learnt in this journey?’. We are far too focused on chasing a timeline rather than focusing on the contribution that one makes and the self-development in this journey of discovery,” says Dr Naicker. 

His supervisor was Prof Alvin J Munsamy from University of KwaZulu-Natal (UKZN) and co-supervisor Dr CB Written from the UFS.  

Need for educational expansion

His research was focused on establishing a framework for postgraduate programmes in specialty fields of optometry for South Africa. The investigation was carried out with practising optometrists as the primary stakeholders and with optometric academics as the custodians for education and training in the country.

“With an overwhelming need for educational expansion found in this investigation, a conceptual framework was proposed as the innovation to take the profession forward in South Africa. Improving patient care from being upskilled and receiving professional recognition for the additional competencies and proficiencies that would be gained, was the motivating factors identified by optometrists to consider further education and training,” says Dr Naicker.

According to him, being in the educational fraternity for almost two decades and as a former education committee member of the professional board of optometry, he was able to see where the shortcomings were in the profession which set him on this path to pursue this research. With most optometrists in clinical practice and no clinical postgraduate qualifications available except pure research-based qualifications in SA, Dr Naicker explains that this hindered optometrists’ professional trajectory and career path opportunities into various special interest areas. 

“By developing a framework for horizontal articulation pathways towards coursework postgraduate qualifications in various clinical specialty fields, this would be the contribution in addressing the educational gap that would guide higher education institutions in their programme development process. The beneficiaries of this expansion would not only be the health professionals but the patients who access optometric care from the optometrists who would have advanced skills and competencies to deliver comprehensive eye care services.”

Stayed motivated

Dr Naicker says the journey to his PhD was challenging from the outset as the country went into hard lockdown due the COVID-19 pandemic just five weeks after he registered for his PhD. Working on a PhD was not a priority at the time when your survival and that of your loved ones was uncertain as thousands of people fell victim to the coronavirus. Further to this, he continues, multiple changes to his supervisory team and the overhaul and revitalisation of the administration and management of the UFS Division of Health Sciences Education, also impacted his progress in his doctoral research at that time. He had felt despondent after a year of being registered when stability arrived with supervisory assistance that re-ignited his drive to pick up the slack and keep moving forward.

“The words ‘push through it’ were verbalised to me by a stranger I met in passing.  While chatting about research I found those three words to be so profound and with such depth that they resonated with my experience of facing adversity but remaining vigilant to preservere and not drop the baton in the race against time to conclude my research. Gaslighting yourself and questioning your potential to complete a PhD only compounds your procrastination which was all too apparent. The goal is to rise above the self-doubt, brush off the devil with the fork sitting on your shoulder and just ‘push through it’.”

Dr Naicker, who is currently supervising four master’s of optometry students in their research undertaking, as well as undergraduate research projects, says he is in the process of publishing the research manuscripts generated from his PhD and is also part of a task team with the professional Board of Optometry for setting up the board exams for foreign-qualified optometrists. He would also like to work on research involving educating the educators of visually impaired learners.

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept