Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 April 2024 | Story Andre Damons | Photo Charl Devenish
Dr Osayande Evbuomwan
Dr Osayande Evbuomwan, Senior Lecturer and Medical Specialist in the Department of Nuclear Medicine at the University of the Free State (UFS), received the first clinical PhD in nuclear medicine completed at the UFS at the April graduation ceremonies.

Dr Osayande Evbuomwan, Senior Lecturer and Medical Specialist in the Department of Nuclear Medicine, Faculty of Health Sciences, at the University of the Free State (UFS), graduated with the first clinical PhD in nuclear medicine completed at the UFS.

He graduated on Thursday (18 April 2024) at the university’s autumn graduation ceremonies when the Faculty of Health Sciences conferred degrees on its graduation class of 2024.

Dr Evbuomwan, the man behind his department using Lutetium 177 PSMA (Lu-177 PSMA) therapy and now Actinium 225 PSMA therapy to treatment metastatic castrate resistant prostate cancer (MCRPC) – an advanced stage prostate cancer, said his PhD is about using a special radiopharmaceutical called Technetium 99m ECDG to detect active disease in the joints of patients with rheumatoid arthritis (RA).

More opportunities for similar degrees

This research has won him the Society of Nuclear Medicine and Molecular Imaging (SNMMI) International Best Abstract Award for South Africa during last year’s SNMMI 2023 Annual Meeting in the US.

“I am very grateful, and at the same time, proud about this achievement (his PhD). This qualification will definitely give more opportunities for further similar degrees at the department. So yes, I feel very happy and fulfilled.

“Rheumatoid arthritis is a debilitating disease with associated morbidity that can lead to serious joint deformity and destruction. The need for an investigation with a very high diagnostic accuracy in detecting active disease is needed, especially in the detection of subclinical disease. Few prior studies in the literature had shown promising results with Tc 99m ECDG imaging in this regard. So, we decided to conduct a proper prospective study to test this hypothesis,” says Dr Evbuomwan.

This research, he explains, was also aimed at finding out if the new nuclear medicine radiopharmaceutical for the identification of active disease in patients with rheumatoid arthritis can also offer prognostic information. This aspect of the study concluded that this particular radiopharmaceutical (Tc – 99m ECDG) is highly sensitive in identifying synovitis (inflammation of the membrane that protects joints) and is capable of offering prognostic information in patients with rheumatoid arthritis.

This was the first prospective study to assess the prognostic value of this radiopharmaceutical in patients with rheumatoid arthritis, Dr Evbuomwan says.

Researching theranostics in the future

According to him, he had a smooth journey to completing his PhD – something he contributes to support from the fantastic team of three supervisors, the assistant who prepared the radiopharmaceutical, the rheumatology department, the radiographers and nurses at the Department of Nuclear Medicine, and most importantly, his wife and two daughters.

His passion for research, growth and the practice of nuclear medicine were his major motivators on this journey.

Dr Evbuomwan is currently looking at the possibility of starting research on theranostics. The only stumbling block for now, he says, is that the department still does not have a PET/CT camera, as this is very vital in today’s nuclear medicine practice. However, together with the Free State Department of Health, they are working hard to secure one.

“I now want to focus on nuclear medicine therapy and its promotion. This includes both imaging and treatment (theranostics) of certain cancers, most especially prostate cancer, neuroendocrine neoplasms, thyroid cancers and the neuroectodermal tumours. I also want to focus on being involved with the training of more registrars at the department of nuclear medicine and increasing the awareness of nuclear medicine amongst colleagues in the Free State,” says Dr Evbuomwan about his future plans. 

News Archive

Champagne and cancer have more in common than you might think
2013-05-08

 

Photo: Supplied
08 May 2013

No, a glass of champagne will not cure cancer....

…But they have more in common than you might think.

Researchers from the Departments of Microbial Biochemical and Food Biotechnology, Physics and the Centre for Microscopy at the University of the Free State in South Africa were recently exploring the properties of yeast cells in wine and food to find out more of how yeast was able to manufacture the gas that caused bread to rise, champagne to fizz and traditional beer to foam. And the discovery they made is a breakthrough that may have enormous implications for the treatment of diseases in humans.

The team discovered that they could slice open cells with argon gas particles, and look inside. They were surprised to find a maze of tiny passages like gas chambers that allowed each cell to ‘breathe.’ It is this tiny set of ‘lungs’ that puts the bubbles in your bubbly and the bounce in your bread.

But it was the technique that the researchers used to open up the cells that caught the attention of the scientists at the Mayo Clinic (Tumor Angiogenesis and Vascular Biology Research Centre) in the US.

Using this technology, they ultimately aim to peer inside cells taken from a cancer patient to see how treatment was progressing. In this way they would be able to assist the Mayo team to target treatments more effectively, reduce dosages in order to make treatment gentler on the patient, and have an accurate view of how the cancer was being eliminated.

“Yes, we are working with the Mayo Clinic,” said Profes Lodewyk Kock from the Microbial, Biochemical and Food Biotechnology Department at the UFS.

“This technique we developed has enormous potential for cell research, whether it is for cancer treatment or any other investigation into the working of cells. Through nanotechnology, and our own invention called Auger-architectomics, we are able to see where no-one has been able to see before.”

The team of Prof Kock including Dr Chantel Swart, Kumisho Dithebe, Prof Hendrik Swart (Physics, UFS) and Prof Pieter van Wyk (Centre for Microscopy, UFS) unlocked the ‘missing link’ that explains the existence of bubbles inside yeasts, and incidentally have created a possible technique for tracking drug and chemotherapy treatment in human cells.

Their work has been published recently in FEMS Yeast Research, the leading international journal on yeast research. In addition, their discovery has been selected for display on the cover page of all 2013 issues of this journal.

One can most certainly raise a glass of champagne to celebrate that!

There are links for video lectures on the technique used and findings on the Internet at:

1. http://vimeo.com/63643628 (Comic version for school kids)

2. http://vimeo.com/61521401 (Detailed version for fellow scientists)

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept