Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 April 2024 | Story Andre Damons | Photo Charl Devenish
Dr Osayande Evbuomwan
Dr Osayande Evbuomwan, Senior Lecturer and Medical Specialist in the Department of Nuclear Medicine at the University of the Free State (UFS), received the first clinical PhD in nuclear medicine completed at the UFS at the April graduation ceremonies.

Dr Osayande Evbuomwan, Senior Lecturer and Medical Specialist in the Department of Nuclear Medicine, Faculty of Health Sciences, at the University of the Free State (UFS), graduated with the first clinical PhD in nuclear medicine completed at the UFS.

He graduated on Thursday (18 April 2024) at the university’s autumn graduation ceremonies when the Faculty of Health Sciences conferred degrees on its graduation class of 2024.

Dr Evbuomwan, the man behind his department using Lutetium 177 PSMA (Lu-177 PSMA) therapy and now Actinium 225 PSMA therapy to treatment metastatic castrate resistant prostate cancer (MCRPC) – an advanced stage prostate cancer, said his PhD is about using a special radiopharmaceutical called Technetium 99m ECDG to detect active disease in the joints of patients with rheumatoid arthritis (RA).

More opportunities for similar degrees

This research has won him the Society of Nuclear Medicine and Molecular Imaging (SNMMI) International Best Abstract Award for South Africa during last year’s SNMMI 2023 Annual Meeting in the US.

“I am very grateful, and at the same time, proud about this achievement (his PhD). This qualification will definitely give more opportunities for further similar degrees at the department. So yes, I feel very happy and fulfilled.

“Rheumatoid arthritis is a debilitating disease with associated morbidity that can lead to serious joint deformity and destruction. The need for an investigation with a very high diagnostic accuracy in detecting active disease is needed, especially in the detection of subclinical disease. Few prior studies in the literature had shown promising results with Tc 99m ECDG imaging in this regard. So, we decided to conduct a proper prospective study to test this hypothesis,” says Dr Evbuomwan.

This research, he explains, was also aimed at finding out if the new nuclear medicine radiopharmaceutical for the identification of active disease in patients with rheumatoid arthritis can also offer prognostic information. This aspect of the study concluded that this particular radiopharmaceutical (Tc – 99m ECDG) is highly sensitive in identifying synovitis (inflammation of the membrane that protects joints) and is capable of offering prognostic information in patients with rheumatoid arthritis.

This was the first prospective study to assess the prognostic value of this radiopharmaceutical in patients with rheumatoid arthritis, Dr Evbuomwan says.

Researching theranostics in the future

According to him, he had a smooth journey to completing his PhD – something he contributes to support from the fantastic team of three supervisors, the assistant who prepared the radiopharmaceutical, the rheumatology department, the radiographers and nurses at the Department of Nuclear Medicine, and most importantly, his wife and two daughters.

His passion for research, growth and the practice of nuclear medicine were his major motivators on this journey.

Dr Evbuomwan is currently looking at the possibility of starting research on theranostics. The only stumbling block for now, he says, is that the department still does not have a PET/CT camera, as this is very vital in today’s nuclear medicine practice. However, together with the Free State Department of Health, they are working hard to secure one.

“I now want to focus on nuclear medicine therapy and its promotion. This includes both imaging and treatment (theranostics) of certain cancers, most especially prostate cancer, neuroendocrine neoplasms, thyroid cancers and the neuroectodermal tumours. I also want to focus on being involved with the training of more registrars at the department of nuclear medicine and increasing the awareness of nuclear medicine amongst colleagues in the Free State,” says Dr Evbuomwan about his future plans. 

News Archive

Eye tracker device a first in Africa
2013-07-31

 

 31 July 2013

Keeping an eye on empowerment

"If we can see what you see, we can think what you think."

Eye-tracking used to be one of those fabulous science-fiction inventions, along with Superman-like bionic ability. Could you really use the movement of your eyes to read people's minds? Or drive your car? Or transfix your enemy with a laser-beam?

Well, actually, yes, you can (apart, perhaps, from the laser beam… ). An eye tracker is not something from science fiction; it actually exists, and is widely used around the world for a number of purposes.

Simply put, an eye tracker is a device for measuring eye positions and eye movement. Its most obvious use is in marketing, to find out what people are looking at (when they see an advertisement, for instance, or when they are wandering along a supermarket aisle). The eye tracker measures where people look first, what attracts their attention, and what they look at the longest. It is used extensively in developed countries to predict consumer behaviour, based on what – literally – catches the eye.

On a more serious level, psychologists, therapists and educators can also use this device for a number of applications, such as analysis and education. And – most excitingly – eye tracking can be used by disabled people to use a computer and thereby operate a number of devices and machines. Impaired or disabled people can use eye tracking to get a whole new lease on life.

In South Africa and other developing countries, however, eye tracking is not widely used. Even though off-the-shelf webcams and open-source software can be obtained extremely cheaply, they are complex to use and the quality cannot be guaranteed. Specialist high-quality eye-tracking devices have to be imported, and they are extremely expensive – or rather – they used to be. Not anymore.

The Department of Computer Science and Informatics (CSI) at the University of the Free State has succeeded in developing a high-quality eye tracker at a fraction of the cost of the imported devices. Along with the hardware, the department has also developed specialised software for a number of applications. These would be useful for graphic designers, marketers, analysts, cognitive psychologists, language specialists, ophthalmologists, radiographers, occupational and speech therapists, and people with disabilities. In the not-too-distant future, even fleet owners and drivers would be able to use this technology.

"The research team at CSI has many years of eye-tracking experience," says team leader Prof Pieter Blignaut, "both with the technical aspect as well as the practical aspect. We also provide a multi-dimensional service to clients that includes the equipment, training and support. We even provide feedback to users.

"We have a basic desktop model available that can be used for research, and can be adapted so that people can interact with a computer. It will be possible in future to design a device that would be able to operate a wheelchair. We are working on a model incorporated into a pair of glasses which will provide gaze analysis for people in their natural surroundings, for instance when driving a vehicle.

"Up till now, the imported models have been too expensive," he continues. "But with our system, the technology is now within reach for anyone who needs it. This could lead to economic expansion and job creation."

The University of the Free State is the first manufacturer of eye-tracking devices in Africa, and Blignaut hopes that the project will contribute to nation-building and empowerment.

"The biggest advantage is that we now have a local manufacturer providing a quality product with local training and support."

In an eye-tracking device, a tiny infra-red light shines on the eye and causes a reflection which is picked up by a high-resolution camera. Every eye movement causes a change in the reflection, which is then mapped. Infra-red light is not harmful to the eye and is not even noticed. Eye movement is then completely natural.

Based on eye movements, a researcher can study cognitive patterns, driver behaviour, attention spans, even thinking patterns. A disabled person could use their eye-movements to interact with a computer, with future technology (still in development) that would enable that computer to control a wheelchair or operate machinery.

The UFS recently initiated the foundation of an eye-tracking interest group for South Africa (ETSA) and sponsor a biennial-eye tracking conference. Their website can be found at www.eyetrackingsa.co.za.

“Eye tracking is an amazing tool for empowerment and development in Africa, “ says Blignaut, “but it is not used as much as it should be, because it is seen as too expensive. We are trying to bring this technology within the reach of anyone and everyone who needs it.”

Issued by: Lacea Loader
Director: Strategic Communication

Telephone: +27 (0) 51 401 2584
Cell: +27 (0) 83 645 2454
E-mail: news@ufs.ac.za
Fax: +27 (0) 51 444 6393

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept