Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 April 2024 | Story Andre Damons | Photo Charl Devenish
Dr Osayande Evbuomwan
Dr Osayande Evbuomwan, Senior Lecturer and Medical Specialist in the Department of Nuclear Medicine at the University of the Free State (UFS), received the first clinical PhD in nuclear medicine completed at the UFS at the April graduation ceremonies.

Dr Osayande Evbuomwan, Senior Lecturer and Medical Specialist in the Department of Nuclear Medicine, Faculty of Health Sciences, at the University of the Free State (UFS), graduated with the first clinical PhD in nuclear medicine completed at the UFS.

He graduated on Thursday (18 April 2024) at the university’s autumn graduation ceremonies when the Faculty of Health Sciences conferred degrees on its graduation class of 2024.

Dr Evbuomwan, the man behind his department using Lutetium 177 PSMA (Lu-177 PSMA) therapy and now Actinium 225 PSMA therapy to treatment metastatic castrate resistant prostate cancer (MCRPC) – an advanced stage prostate cancer, said his PhD is about using a special radiopharmaceutical called Technetium 99m ECDG to detect active disease in the joints of patients with rheumatoid arthritis (RA).

More opportunities for similar degrees

This research has won him the Society of Nuclear Medicine and Molecular Imaging (SNMMI) International Best Abstract Award for South Africa during last year’s SNMMI 2023 Annual Meeting in the US.

“I am very grateful, and at the same time, proud about this achievement (his PhD). This qualification will definitely give more opportunities for further similar degrees at the department. So yes, I feel very happy and fulfilled.

“Rheumatoid arthritis is a debilitating disease with associated morbidity that can lead to serious joint deformity and destruction. The need for an investigation with a very high diagnostic accuracy in detecting active disease is needed, especially in the detection of subclinical disease. Few prior studies in the literature had shown promising results with Tc 99m ECDG imaging in this regard. So, we decided to conduct a proper prospective study to test this hypothesis,” says Dr Evbuomwan.

This research, he explains, was also aimed at finding out if the new nuclear medicine radiopharmaceutical for the identification of active disease in patients with rheumatoid arthritis can also offer prognostic information. This aspect of the study concluded that this particular radiopharmaceutical (Tc – 99m ECDG) is highly sensitive in identifying synovitis (inflammation of the membrane that protects joints) and is capable of offering prognostic information in patients with rheumatoid arthritis.

This was the first prospective study to assess the prognostic value of this radiopharmaceutical in patients with rheumatoid arthritis, Dr Evbuomwan says.

Researching theranostics in the future

According to him, he had a smooth journey to completing his PhD – something he contributes to support from the fantastic team of three supervisors, the assistant who prepared the radiopharmaceutical, the rheumatology department, the radiographers and nurses at the Department of Nuclear Medicine, and most importantly, his wife and two daughters.

His passion for research, growth and the practice of nuclear medicine were his major motivators on this journey.

Dr Evbuomwan is currently looking at the possibility of starting research on theranostics. The only stumbling block for now, he says, is that the department still does not have a PET/CT camera, as this is very vital in today’s nuclear medicine practice. However, together with the Free State Department of Health, they are working hard to secure one.

“I now want to focus on nuclear medicine therapy and its promotion. This includes both imaging and treatment (theranostics) of certain cancers, most especially prostate cancer, neuroendocrine neoplasms, thyroid cancers and the neuroectodermal tumours. I also want to focus on being involved with the training of more registrars at the department of nuclear medicine and increasing the awareness of nuclear medicine amongst colleagues in the Free State,” says Dr Evbuomwan about his future plans. 

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept