Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 August 2024 | Story André Damons | Photo André Damons
Dr Alba du Toit
Dr Alba du Toit, Senior Lecturer in the Department of Sustainable Food Systems and Development, is leading the newly established Innovative ARC-DALLRD-UFS Agro-processing for Climate-smart Food System research chair at the UFS.

The Innovative Agro-processing for Climate-smart Food System research chair, one of four ARC-DALLRD-UFS research chairs recently established at the University of the Free State (UFS), will focus on innovative agro-processing technologies that could affect food and nutrition security. The chair’s work will also focus on improving food systems that can impact socioeconomic development.

In a concerted effort to address the challenges and effects of climate change in Southern Africa, the UFS, together with the Agricultural Research Council (ARC) and the Department of Agriculture, Land Reform and Rural Development (DALRRD), established four new research chairs within the Faculty of Natural and Agricultural Sciences (NAS).

The other research chairs are Climate Change and Agriculture, Agriculture Risk Financing and Sustainable Livestock Production and together with the Innovative Agro-processing for Climate-smart Food System research chair, and fall under the umbrella of climate change. They will also be part of the centre of excellence of the ARC and DALRRD on Climate Smart Agriculture.

Dr Alba du Toit, Senior Lecturer in the Department of Sustainable Food Systems and Development, will lead the Innovative Agro-processing for Climate-smart Food System research chair and says the chair allows researchers to dedicate their time and effort towards research. It consolidates expertise, resources, and facilities to strengthen the research team’s capacity and will have a strong foundation for sustainable development goals. The chair provides a hub for collaboration between the UFS, ARC and DALLRD to focus on regionally engaged research with maximum societal impact.

The chair, which officially started on 1 July, also allows researchers to do trans- and multi-disciplinary, relevant and cutting-edge research.

Nixtamalisation could transform the food system

“We believe that nixtamalisation could transform the food system. However, the consumer’s willingness to adopt and embrace new products and techniques is dependent on the success of the initiative.

“Thus, innovations in new product development must be consumer-led since the consumer is constantly evolving, making it imperative to understand consumer behaviour and motivations behind decision-making,” says Dr Du Toit.

The nixtamalisation process, she explains, is a multistep technique commonly employed in Mexico, Central America and the southern regions of the US to transform maize into food products. The nixtamalisation process alters the physicochemical, nutritional and sensory properties of maize products by increasing protein quality, improving the content of calcium, magnesium and potassium and reducing mycotoxin levels.”

According to Dr Du Toit, by using the principles of circular food design, they will develop products that could provide solutions and support the food system. It involves using processing technologies that could be applied and implemented by anyone with access to a basic kitchen.

“This would benefit rural farmers and communities, small-scale and emerging farmers to provide food for themselves and become economically active small business owners. We believed the right product could not only influence the food security and well-being of individual households but also stimulate entrepreneurial action, which could benefit the community and overcome barriers to make nixtamalisation an acceptable practice for all,” says Dr Du Toit.

Maize and sorghum

“Maize and sorghum are staple crops in South Africa that are not being utilised to their full potential. South Africa is well known for its maize production, and it is the staple for most of the population in the form of pap. However, the reliance on pap exaggerates the issues of food and nutrition insecurity because pap cooked from Super Maize Meal is deficient in nutrients and often consumed in isolation without diversification in the diet.

“Sorghum is another cereal crop that is climate-smart, drought-resistant and suited in South Africa’s arid and semi-arid areas, while it offers good nutritional value. However, most consumers are not familiar with the crop except for its application as an instant porridge.  Nixtamalisation is a process that could benefit consumers as maize and sorghum could be transformed into nutritious, safe meals directly from the farm to the fork,” explains Dr Du Toit.

Home-grown dried whole maize kernels, she continues, could be converted into safe and delicious meals in homes using basic equipment as it is widely and effectively done in Mexico by rural women. The research will determine if consumers would accept the process of nixtamalisation, whether the products would be acceptable, and if the nutritional value would be comparable to commercial products.

Some of the news consumer-acceptable products already developed, include maize chips, dehydrated phutu pap, and corndogs. Currently, the team is working on maize-milk, maize-milk frozen dessert and a custard tart. Maize products have the advantage of being lactose- and gluten-free and thus would appeal to consumers of plant-based products.

Societal impact

Dr Du Toit says she is excited about the societal impact this project will have on communities and the country and is hopeful that they will be able to influence policymakers and the industry to provide more nutritious staples that could be “game-changers” for the sake of society. She is looking forward to collaborating with DALRRD, the ARC and the grain industry to ensure that partnerships are strengthened and new opportunities are created for the staff and students.

Prof Wilna Oldewage-Theron, a Professor of Nutrition in the College of Human Sciences at Texas Tech University, will join the research chair next year as the co-leader. She has experience in community nutrition research in Africa, and her research interests include the factors contributing to household food insecurity and malnutrition in resource-poor communities. She will be focused on the nutritional benefits of soy for human health.

Prof Maryke Labuschagne, who is leading the NRF SARChI Chair in Diseases and Quality of Field Crops and who is passionate about impacting malnutrition, has been appointed as mentor for the chair.

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept