Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 August 2024 | Story André Damons | Photo André Damons
Dr Alba du Toit
Dr Alba du Toit, Senior Lecturer in the Department of Sustainable Food Systems and Development, is leading the newly established Innovative ARC-DALLRD-UFS Agro-processing for Climate-smart Food System research chair at the UFS.

The Innovative Agro-processing for Climate-smart Food System research chair, one of four ARC-DALLRD-UFS research chairs recently established at the University of the Free State (UFS), will focus on innovative agro-processing technologies that could affect food and nutrition security. The chair’s work will also focus on improving food systems that can impact socioeconomic development.

In a concerted effort to address the challenges and effects of climate change in Southern Africa, the UFS, together with the Agricultural Research Council (ARC) and the Department of Agriculture, Land Reform and Rural Development (DALRRD), established four new research chairs within the Faculty of Natural and Agricultural Sciences (NAS).

The other research chairs are Climate Change and Agriculture, Agriculture Risk Financing and Sustainable Livestock Production and together with the Innovative Agro-processing for Climate-smart Food System research chair, and fall under the umbrella of climate change. They will also be part of the centre of excellence of the ARC and DALRRD on Climate Smart Agriculture.

Dr Alba du Toit, Senior Lecturer in the Department of Sustainable Food Systems and Development, will lead the Innovative Agro-processing for Climate-smart Food System research chair and says the chair allows researchers to dedicate their time and effort towards research. It consolidates expertise, resources, and facilities to strengthen the research team’s capacity and will have a strong foundation for sustainable development goals. The chair provides a hub for collaboration between the UFS, ARC and DALLRD to focus on regionally engaged research with maximum societal impact.

The chair, which officially started on 1 July, also allows researchers to do trans- and multi-disciplinary, relevant and cutting-edge research.

Nixtamalisation could transform the food system

“We believe that nixtamalisation could transform the food system. However, the consumer’s willingness to adopt and embrace new products and techniques is dependent on the success of the initiative.

“Thus, innovations in new product development must be consumer-led since the consumer is constantly evolving, making it imperative to understand consumer behaviour and motivations behind decision-making,” says Dr Du Toit.

The nixtamalisation process, she explains, is a multistep technique commonly employed in Mexico, Central America and the southern regions of the US to transform maize into food products. The nixtamalisation process alters the physicochemical, nutritional and sensory properties of maize products by increasing protein quality, improving the content of calcium, magnesium and potassium and reducing mycotoxin levels.”

According to Dr Du Toit, by using the principles of circular food design, they will develop products that could provide solutions and support the food system. It involves using processing technologies that could be applied and implemented by anyone with access to a basic kitchen.

“This would benefit rural farmers and communities, small-scale and emerging farmers to provide food for themselves and become economically active small business owners. We believed the right product could not only influence the food security and well-being of individual households but also stimulate entrepreneurial action, which could benefit the community and overcome barriers to make nixtamalisation an acceptable practice for all,” says Dr Du Toit.

Maize and sorghum

“Maize and sorghum are staple crops in South Africa that are not being utilised to their full potential. South Africa is well known for its maize production, and it is the staple for most of the population in the form of pap. However, the reliance on pap exaggerates the issues of food and nutrition insecurity because pap cooked from Super Maize Meal is deficient in nutrients and often consumed in isolation without diversification in the diet.

“Sorghum is another cereal crop that is climate-smart, drought-resistant and suited in South Africa’s arid and semi-arid areas, while it offers good nutritional value. However, most consumers are not familiar with the crop except for its application as an instant porridge.  Nixtamalisation is a process that could benefit consumers as maize and sorghum could be transformed into nutritious, safe meals directly from the farm to the fork,” explains Dr Du Toit.

Home-grown dried whole maize kernels, she continues, could be converted into safe and delicious meals in homes using basic equipment as it is widely and effectively done in Mexico by rural women. The research will determine if consumers would accept the process of nixtamalisation, whether the products would be acceptable, and if the nutritional value would be comparable to commercial products.

Some of the news consumer-acceptable products already developed, include maize chips, dehydrated phutu pap, and corndogs. Currently, the team is working on maize-milk, maize-milk frozen dessert and a custard tart. Maize products have the advantage of being lactose- and gluten-free and thus would appeal to consumers of plant-based products.

Societal impact

Dr Du Toit says she is excited about the societal impact this project will have on communities and the country and is hopeful that they will be able to influence policymakers and the industry to provide more nutritious staples that could be “game-changers” for the sake of society. She is looking forward to collaborating with DALRRD, the ARC and the grain industry to ensure that partnerships are strengthened and new opportunities are created for the staff and students.

Prof Wilna Oldewage-Theron, a Professor of Nutrition in the College of Human Sciences at Texas Tech University, will join the research chair next year as the co-leader. She has experience in community nutrition research in Africa, and her research interests include the factors contributing to household food insecurity and malnutrition in resource-poor communities. She will be focused on the nutritional benefits of soy for human health.

Prof Maryke Labuschagne, who is leading the NRF SARChI Chair in Diseases and Quality of Field Crops and who is passionate about impacting malnutrition, has been appointed as mentor for the chair.

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept