Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 August 2024 | Story André Damons | Photo André Damons
Dr Alba du Toit
Dr Alba du Toit, Senior Lecturer in the Department of Sustainable Food Systems and Development, is leading the newly established Innovative ARC-DALLRD-UFS Agro-processing for Climate-smart Food System research chair at the UFS.

The Innovative Agro-processing for Climate-smart Food System research chair, one of four ARC-DALLRD-UFS research chairs recently established at the University of the Free State (UFS), will focus on innovative agro-processing technologies that could affect food and nutrition security. The chair’s work will also focus on improving food systems that can impact socioeconomic development.

In a concerted effort to address the challenges and effects of climate change in Southern Africa, the UFS, together with the Agricultural Research Council (ARC) and the Department of Agriculture, Land Reform and Rural Development (DALRRD), established four new research chairs within the Faculty of Natural and Agricultural Sciences (NAS).

The other research chairs are Climate Change and Agriculture, Agriculture Risk Financing and Sustainable Livestock Production and together with the Innovative Agro-processing for Climate-smart Food System research chair, and fall under the umbrella of climate change. They will also be part of the centre of excellence of the ARC and DALRRD on Climate Smart Agriculture.

Dr Alba du Toit, Senior Lecturer in the Department of Sustainable Food Systems and Development, will lead the Innovative Agro-processing for Climate-smart Food System research chair and says the chair allows researchers to dedicate their time and effort towards research. It consolidates expertise, resources, and facilities to strengthen the research team’s capacity and will have a strong foundation for sustainable development goals. The chair provides a hub for collaboration between the UFS, ARC and DALLRD to focus on regionally engaged research with maximum societal impact.

The chair, which officially started on 1 July, also allows researchers to do trans- and multi-disciplinary, relevant and cutting-edge research.

Nixtamalisation could transform the food system

“We believe that nixtamalisation could transform the food system. However, the consumer’s willingness to adopt and embrace new products and techniques is dependent on the success of the initiative.

“Thus, innovations in new product development must be consumer-led since the consumer is constantly evolving, making it imperative to understand consumer behaviour and motivations behind decision-making,” says Dr Du Toit.

The nixtamalisation process, she explains, is a multistep technique commonly employed in Mexico, Central America and the southern regions of the US to transform maize into food products. The nixtamalisation process alters the physicochemical, nutritional and sensory properties of maize products by increasing protein quality, improving the content of calcium, magnesium and potassium and reducing mycotoxin levels.”

According to Dr Du Toit, by using the principles of circular food design, they will develop products that could provide solutions and support the food system. It involves using processing technologies that could be applied and implemented by anyone with access to a basic kitchen.

“This would benefit rural farmers and communities, small-scale and emerging farmers to provide food for themselves and become economically active small business owners. We believed the right product could not only influence the food security and well-being of individual households but also stimulate entrepreneurial action, which could benefit the community and overcome barriers to make nixtamalisation an acceptable practice for all,” says Dr Du Toit.

Maize and sorghum

“Maize and sorghum are staple crops in South Africa that are not being utilised to their full potential. South Africa is well known for its maize production, and it is the staple for most of the population in the form of pap. However, the reliance on pap exaggerates the issues of food and nutrition insecurity because pap cooked from Super Maize Meal is deficient in nutrients and often consumed in isolation without diversification in the diet.

“Sorghum is another cereal crop that is climate-smart, drought-resistant and suited in South Africa’s arid and semi-arid areas, while it offers good nutritional value. However, most consumers are not familiar with the crop except for its application as an instant porridge.  Nixtamalisation is a process that could benefit consumers as maize and sorghum could be transformed into nutritious, safe meals directly from the farm to the fork,” explains Dr Du Toit.

Home-grown dried whole maize kernels, she continues, could be converted into safe and delicious meals in homes using basic equipment as it is widely and effectively done in Mexico by rural women. The research will determine if consumers would accept the process of nixtamalisation, whether the products would be acceptable, and if the nutritional value would be comparable to commercial products.

Some of the news consumer-acceptable products already developed, include maize chips, dehydrated phutu pap, and corndogs. Currently, the team is working on maize-milk, maize-milk frozen dessert and a custard tart. Maize products have the advantage of being lactose- and gluten-free and thus would appeal to consumers of plant-based products.

Societal impact

Dr Du Toit says she is excited about the societal impact this project will have on communities and the country and is hopeful that they will be able to influence policymakers and the industry to provide more nutritious staples that could be “game-changers” for the sake of society. She is looking forward to collaborating with DALRRD, the ARC and the grain industry to ensure that partnerships are strengthened and new opportunities are created for the staff and students.

Prof Wilna Oldewage-Theron, a Professor of Nutrition in the College of Human Sciences at Texas Tech University, will join the research chair next year as the co-leader. She has experience in community nutrition research in Africa, and her research interests include the factors contributing to household food insecurity and malnutrition in resource-poor communities. She will be focused on the nutritional benefits of soy for human health.

Prof Maryke Labuschagne, who is leading the NRF SARChI Chair in Diseases and Quality of Field Crops and who is passionate about impacting malnutrition, has been appointed as mentor for the chair.

News Archive

UFS Department of Physics offers unique learning experience with on-campus radio telescope
2015-12-14

Athanasius Ramaila, an Honours student in the Department of Physics, and Dr Brian van Soelen, a lecturer from the same department, in the laboratory where the radio telescope is housed in the new wing of the Physics Building on the Bloemfontein Campus of the UFS. The telescope will be used to expose graduate students to the basic techniques of radio astronomy.
Photo: Charl Devenish

The university this year added a four-storey wing to the existing Physics Building on the Bloemfontein Campus. The new development, which includes four lecture halls and four laboratories, complements other world-class facilities such as the X-ray photoelectron spectroscope and the scanning electron microscope.

A unique asset that distinguishes the UFS Department of Physics from other similar institutions, is the Boyden Observatory situated approximately 27 km northeast of Bloemfontein. The observatory houses a powerful 1.5 m optical telescope, and several smaller, but well equipped telescopes.

According to Pieter Meintjes, Professor in the Department of Physics, the observatory has acquired a new addition - a 0.5 m optical telescope donated by the South African Astronomical Observatory (SAAO) and the National Research Foundation (NRF) to the UFS Astrophysics Group. This optical telescope is one of two powerful optical telescopes used to introduce students to techniques such as photometry and spectroscopy.

“The telescope at Boyden forms an integral part of the Department of Physic’s student training and research programme. Because the UFS is the only university in South Africa operating such a facility, and one of only a few globally, Astrophysics students at the UFS have the unique privilege of having unrestricted access to these telescopes for their MSc and PhD studies,” says Prof Meintjes. In addition, the department has also built a radio telescope as part of a post-graduate student project. The telescope, housed in the new wing of the Physics Building at the Bloemfontein Campus of the UFS, will be used to expose graduate students to the basic techniques of radio astronomy, especially in light of the fact that the SKA is nascent. Prof Meintjes would like to act proactively by grounding his students in the relevant techniques of radio astronomy. The telescope will be used to introduce students to the manner in which radio flux calibrations are performed in order to determine the energy output of an emitting source.

At undergraduate level, the radio telescope will be used, together with optical telescopes in the Astrophysics laboratory, to place students at a high baseline regarding the level of multi-wavelength astrophysics training received at the UFS.

Third-year and Honours students will also have the opportunity of practical training in a research laboratory with 15 computers. The laboratory is equipped with software used to reduce and analyse multi-wavelength data.

“My goal is for the UFS to become the major centre of multi-wavelength astrophysics in South Africa and a key role player in the international arena. To be able to do this, our training should be world class,” Prof Meintjes said.

Aided by its world-class facilities and research, the Department of Physics is competing with the best in the world. Research-wise, a group from the Department of Physics is intensively involved with the SKA Project (Square Kilometre Array), with 3 000 dishes reaching from Carnavon in the Karoo to Mauritius in the Indian Ocean. According to Prof Meintjes, many detailed studies can be conducted with the SKA system of sources, showing major eruptions and mass effluent from the systems. Athanasius Ramaila, a BSc Honours student in Astrophysics at the UFS, has also received a two-year SKA internship, where he will be engaged in the SKA software engineering programme to help with developing software for the telescope.

The UFS Astrophysics Group is focusing on the multi-wavelength study of high-energy astrophysics sources. “This multi-wavelength approach to astrophysics is in line with the recent announcement by government that multi wavelength astrophysics will be the main focus for astrophysics research in South Africa. It is also a very important focus for research in the international arena, as can be seen from the large number of international conferences having a multi-wavelength character,” Prof Meintjes said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept