Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 August 2024 | Story André Damons | Photo André Damons
Dr Alba du Toit
Dr Alba du Toit, Senior Lecturer in the Department of Sustainable Food Systems and Development, is leading the newly established Innovative ARC-DALLRD-UFS Agro-processing for Climate-smart Food System research chair at the UFS.

The Innovative Agro-processing for Climate-smart Food System research chair, one of four ARC-DALLRD-UFS research chairs recently established at the University of the Free State (UFS), will focus on innovative agro-processing technologies that could affect food and nutrition security. The chair’s work will also focus on improving food systems that can impact socioeconomic development.

In a concerted effort to address the challenges and effects of climate change in Southern Africa, the UFS, together with the Agricultural Research Council (ARC) and the Department of Agriculture, Land Reform and Rural Development (DALRRD), established four new research chairs within the Faculty of Natural and Agricultural Sciences (NAS).

The other research chairs are Climate Change and Agriculture, Agriculture Risk Financing and Sustainable Livestock Production and together with the Innovative Agro-processing for Climate-smart Food System research chair, and fall under the umbrella of climate change. They will also be part of the centre of excellence of the ARC and DALRRD on Climate Smart Agriculture.

Dr Alba du Toit, Senior Lecturer in the Department of Sustainable Food Systems and Development, will lead the Innovative Agro-processing for Climate-smart Food System research chair and says the chair allows researchers to dedicate their time and effort towards research. It consolidates expertise, resources, and facilities to strengthen the research team’s capacity and will have a strong foundation for sustainable development goals. The chair provides a hub for collaboration between the UFS, ARC and DALLRD to focus on regionally engaged research with maximum societal impact.

The chair, which officially started on 1 July, also allows researchers to do trans- and multi-disciplinary, relevant and cutting-edge research.

Nixtamalisation could transform the food system

“We believe that nixtamalisation could transform the food system. However, the consumer’s willingness to adopt and embrace new products and techniques is dependent on the success of the initiative.

“Thus, innovations in new product development must be consumer-led since the consumer is constantly evolving, making it imperative to understand consumer behaviour and motivations behind decision-making,” says Dr Du Toit.

The nixtamalisation process, she explains, is a multistep technique commonly employed in Mexico, Central America and the southern regions of the US to transform maize into food products. The nixtamalisation process alters the physicochemical, nutritional and sensory properties of maize products by increasing protein quality, improving the content of calcium, magnesium and potassium and reducing mycotoxin levels.”

According to Dr Du Toit, by using the principles of circular food design, they will develop products that could provide solutions and support the food system. It involves using processing technologies that could be applied and implemented by anyone with access to a basic kitchen.

“This would benefit rural farmers and communities, small-scale and emerging farmers to provide food for themselves and become economically active small business owners. We believed the right product could not only influence the food security and well-being of individual households but also stimulate entrepreneurial action, which could benefit the community and overcome barriers to make nixtamalisation an acceptable practice for all,” says Dr Du Toit.

Maize and sorghum

“Maize and sorghum are staple crops in South Africa that are not being utilised to their full potential. South Africa is well known for its maize production, and it is the staple for most of the population in the form of pap. However, the reliance on pap exaggerates the issues of food and nutrition insecurity because pap cooked from Super Maize Meal is deficient in nutrients and often consumed in isolation without diversification in the diet.

“Sorghum is another cereal crop that is climate-smart, drought-resistant and suited in South Africa’s arid and semi-arid areas, while it offers good nutritional value. However, most consumers are not familiar with the crop except for its application as an instant porridge.  Nixtamalisation is a process that could benefit consumers as maize and sorghum could be transformed into nutritious, safe meals directly from the farm to the fork,” explains Dr Du Toit.

Home-grown dried whole maize kernels, she continues, could be converted into safe and delicious meals in homes using basic equipment as it is widely and effectively done in Mexico by rural women. The research will determine if consumers would accept the process of nixtamalisation, whether the products would be acceptable, and if the nutritional value would be comparable to commercial products.

Some of the news consumer-acceptable products already developed, include maize chips, dehydrated phutu pap, and corndogs. Currently, the team is working on maize-milk, maize-milk frozen dessert and a custard tart. Maize products have the advantage of being lactose- and gluten-free and thus would appeal to consumers of plant-based products.

Societal impact

Dr Du Toit says she is excited about the societal impact this project will have on communities and the country and is hopeful that they will be able to influence policymakers and the industry to provide more nutritious staples that could be “game-changers” for the sake of society. She is looking forward to collaborating with DALRRD, the ARC and the grain industry to ensure that partnerships are strengthened and new opportunities are created for the staff and students.

Prof Wilna Oldewage-Theron, a Professor of Nutrition in the College of Human Sciences at Texas Tech University, will join the research chair next year as the co-leader. She has experience in community nutrition research in Africa, and her research interests include the factors contributing to household food insecurity and malnutrition in resource-poor communities. She will be focused on the nutritional benefits of soy for human health.

Prof Maryke Labuschagne, who is leading the NRF SARChI Chair in Diseases and Quality of Field Crops and who is passionate about impacting malnutrition, has been appointed as mentor for the chair.

News Archive

Maize breeder rewarded for his research to enhance food security in Africa
2016-08-26

Description: Maize breeder rewarded  Tags: Maize breeder rewarded

Prof Maryke Labuschagne from the UFS Department
of Plant Sciences, Berhanu Tadesse Ertiro, a
postgraduate student in Plant breeding at the UFS,
and Dr Peg Redinbaugh of the US Department of
Agriculture in Wooster, Ohio.
Photo: Supplied

Ethiopia is one of the African countries, deeply affected by food insecurity. Berhanu Tadesse Ertiro, a citizen from Ethiopia started his career - after graduating with his undergraduate degree in 2003 - as a junior maize breeder. Today he is pursuing his doctorate degree in Plant Breeding at the University of the Free State (UFS).

His research had made some great strides in contributing to food security in Africa. He recently received a fellowship from the prestigious Norman E. Borlaug Leadership Enhancement in Agriculture Program (Borlaug LEAP).

This fellowship is only awarded to students whose research has relevance to the national development of the student’s home country or region. The aim of these fellowships are to enhance the quality of thesis research of graduate students from developing countries who show strong promise as leaders in the field of agriculture and related disciplines.

Low soil fertility a major maize production constraint
Berhanu is also a visiting student at the International Maize and Wheat Improvement Center (CIMMYT) in Kenya, where he is running field experiments for his PhD thesis dissertation. His research focuses on Nitrogen Use Efficiency (NUE) and Maize Lethal Necrosis (MLN) disease tolerance. Low soil fertility and MLN are among the major maize production constraints in eastern and southern Africa, where maize is staple food.

Such hybrids have the potential to contribute greatly
towards food security among farmers and their
families through increased productivity.

The use of new tools could increase breeding efficiency and reduce the time needed for the release of new stress tolerant hybrids. Such hybrids have the potential to contribute greatly towards food security among farmers and their families through increased productivity. Berhanu is looking at the feasibility of genome wide selection for improvement of NUE in tropical maize.

Fellowship includes mentorship and supervision across borders
The programme supports engaging a mentor at a United States university and Consortium of International Agricultural Research Centers (CGIAR). During his fellowship, he will be supervised and mentored by Prof Maryke Labuschagne of the UFS, Prof Rex Bernando, a professor of Corn Breeding and Genetics at the University of Minnesota and Dr Biswanath Das of CIMMYT, Kenya.

As a LEAP fellow, Berhanu was invited to attend the 30th Annual World Food Prize events to take place in October 2016, in Des Moines, Iowa. The week will include his attendance at the Board for International Food and Agricultural Development meeting, participation at side-events at the Borlaug Dialogue International Symposium and the World Food Prize.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept