Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 September 2024 | Story André Damons | Photo Supplied
Dr Puseletso Mofokeng
Dr Julia Puseletso Mofokeng, from the UFS’s Department of Chemistry, is doing research into biodegradable polymers for application in disposable product packaging.

A researcher from the University of the Free State (UFS) is contributing to the fight against plastic pollution through her research into biodegradable polymers – large, chain-like molecules – as a more environmentally friendly alternative to petroleum-based plastics.

Plastic pollution is a global environmental problem, with 19 to 23 million tonnes of plastic waste leaked into aquatic ecosystems every year.

Dr Julia Puseletso Mofokeng, Senior Lecturer and Researcher in the UFS Department of Chemistry, hopes her research into how biodegradable polymers can be used in disposable product packaging can influence the industry and policymakers to enforce the use of biopolymers or biodegradable polymers in disposable products. This would help reduce plastic waste and boost environment-conservation efforts.

The United Nations Environment Programme (UNEP) describes plastic waste as a serious environmental problem – humans produce about 400 million tonnes of plastic waste every year. Approximately 36% of all plastics produced are used in packaging, including single-use plastic products for food and beverage containers, approximately 85% of which ends up in landfills or as unregulated waste.

Researching biodegradable polymers

Dr Mofokeng’s desire to solve the waste problem in her community of Bophelong village in Qwaqwa, Free State – where community members dumped and burned all sorts of waste, including plastics – inspired her towards her field of research.

Today, her research is aimed at managing plastic waste to combat environmental and atmospheric pollution (from incineration), conserve energy, and improve water quality, including ensuring safe drinking water.

High levels of plastic waste have led to increased research into and development of biodegradable polymers as an alternative to non-biodegradable materials for short-shelf-life goods (such as packaging for fresh fruit and vegetables).

Biopolymers or biodegradable polymers, explains Dr Mofokeng, are derived from renewable resources including, but not limited to, vegetable oils, starches and animal fats. They can therefore be easily disposed of after use without harming the environment.

“My research is based on the preparation and characterisation of completely biodegradable polymers, their blends, and composites or nanocomposites filled with unmodified or modified inorganic fillers, natural fibres, as well as synthesised carbonaceous materials,” she says.

Such materials are developed for various applications, including packaging, electromagnetic interference shielding (blocking unwanted signals), and the removal of heavy metals and other contaminants from water bodies. 

“To achieve these aims, I and my small research group are preparing completely biodegradable polymer blends.”

This involves adjusting their morphology (structure) and some of their properties (thermal, thermomechanical, mechanical, and flame retardancy) to match those of petroleum-based polymers in their replacement for disposable products; by reinforcing with natural fibres, and minerals.

Biodegradable polymers can degrade within a few days to a few years depending on their source, type, and biodegradation method used, while petroleum-based polymers can exist for hundreds to thousands of years without degrading. Moreover, because biodegradable polymers are produced from natural resources, their biodegradation mainly produces carbon dioxide, water, and other non-toxic byproducts, Dr Mofokeng adds.

“Biodegradable polymers can degrade by themselves under natural environmental conditions – in one to three years – or may require human intervention to degrade where composts are prepared or conditions are controlled in order to degrade the polymers. The latter two being the fastest, where it could take days to months. In my previous research project [we] kept polylactic acid filled with short sisal fibre in plain water at 80℃, and all the tested samples degraded within 10 days.”

She and a PhD student are conducting an ongoing experiment involving three different biodegradable polymer systems exposed to different conditions outside and under soil, measuring the rate of biodegradation by mimicking the environmental conditions found in dumping sites and landfills.

Signs of biodegradation on the samples showed clearly after 14 months, with cracks, surface erosion, and a decrease in the initial weighed mass, suggesting that the polymers could be completely degraded within two to three years.

Closer to goal

Dr Mofokeng, who has been a National Research Foundation (NRF) Y2-rated researcher since 2021, says since most food outlets and restaurants in South Africa have already started using paper- and bio-based polymer materials in cutlery, straws, and takeaway packaging, the country seems to be closer to its goal of using biodegradable polymers for disposable packaging.

The UFS, too, is aiming to phase out the use of plastic bottles in the next three to five years. This will be done by installing filtered water machines in all its buildings.

“We are now left with policymakers to enforce strict laws governing production; and retail industries to use biopolymers or biodegradable polymers in disposable packaging materials,” she says.

New research

Dr Mofokeng and her group’s research is in line with the United Nations’ Sustainable Development Goals (SDGs), including ensuring good health and wellbeing (SDG3), providing clean water and sanitation (SDG6), forging sustainable cities and communities (SDG11), establishing sustainable consumption and production patterns (SDG12), and protecting life below water (SDG14).

She has been researching polymers for almost two decades, and remains passionate about her research field and educating communities. Her new research project, in collaboration with colleagues from her department, targets the removal of heavy metals and other contaminants from groundwater. Testing and water treatment is set to take place in different regions in Qwaqwa, specifically among households that collect drinking and cooking water from boreholes.

Dr Mofokeng’s research group was established in 2016 with one honours and two master’s students. She has since supervised nine honours, seven master’s and one PhD student.

She also recently established international research collaborations with the Libyan Advanced Center for Chemical Analysis and the Faculty of Technology at the University of Banja Luka in Serbia.

News Archive

Project aims to boost science pass rate
2009-01-19

 
Attending the launch of the HP grant of about R1 million to the UFS are, from the left: Mr Leon Erasmus, Country Manager for HP Technology Services in South Africa, Prof. Teuns Verschoor, Acting Rector of the UFS, and Mr Cobus van Breda, researcher at the UFS's Centre for Education Development and manager of the project.
Photo: Lacea Loader
The University of the Free State (UFS), in partnership with computer giant Hewlett Packard (HP), wants to boost the pass rate of its science students by using mobile technology.

The UFS is one of only 15 universities across Europe, the Middle East and Africa and the only university in South Africa to receive a grant from HP to promote mobile technology for teaching in higher education valued at USD$ 100,000 (or about R1 million). Altogether 80 universities from 28 countries applied for the grant.

“Last year HP invited a number of selected universities to submit proposals in which they had to explain how they are going to utilise mobile technologies in the redesign of a course that is presented at the university. The proposal of the Centre for Education Development (CED) at the UFS entitled “Understanding Physics through data logging” was accepted,” says Mr Cobus van Breda, researcher at CED and manager of the project.

According to Mr van Breda, students who do not meet the entrance requirements for the three-year B.Sc. programme have to enroll for the four-year curriculum with the first year actually preparing them for the three-year curriculum.

In order to increase the success rate of these students, the project envisages to enhance their understanding of science principles by utilising the advantages of personal computer (PC) tablet technology and other information and communication technologies (ICT) to support effective teaching and learning methodology.

“By using PC tablet technology in collaboration with data-logging software, a personal response system, the internet and other interactive ICT applications, an environment different from a traditional teaching milieu is created. This will consequently result in a different approach to addressing students’ learning issues,” says Mr van Breda.

The pilot project was launched during the fourth term of 2008 when 130 first-year B.Sc. students (of the four-year curriculum) did the practical component of the physics section of the Concepts in General Science (CGS) module by conducting experiments in a computerised laboratory, using data-logging software amongst other technology applications. “The pilot project delivered good results and students found the interactive application very helpful,” says Mr van Breda.

”The unique feature of the latter is the fact that real-life data can be collected with electronic sensors and instantly presented as computer graphs. It can then be analysed and interpreted immediately, thus more time can be devoted to actual Science principles and phenomena and less time on time-consuming data processing,” says Mr van Breda.

The CGS module can be seen as a prerequisite for further studies in physics at university level and in this regard it is of essence to keep looking for new models of learning and teaching which can result in student success. This year the theoretical and practical component of the physics section of the CGS programme will be done in an integrated manner.

Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
16 January 2009
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept