Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 September 2024 | Story André Damons | Photo Supplied
Dr Puseletso Mofokeng
Dr Julia Puseletso Mofokeng, from the UFS’s Department of Chemistry, is doing research into biodegradable polymers for application in disposable product packaging.

A researcher from the University of the Free State (UFS) is contributing to the fight against plastic pollution through her research into biodegradable polymers – large, chain-like molecules – as a more environmentally friendly alternative to petroleum-based plastics.

Plastic pollution is a global environmental problem, with 19 to 23 million tonnes of plastic waste leaked into aquatic ecosystems every year.

Dr Julia Puseletso Mofokeng, Senior Lecturer and Researcher in the UFS Department of Chemistry, hopes her research into how biodegradable polymers can be used in disposable product packaging can influence the industry and policymakers to enforce the use of biopolymers or biodegradable polymers in disposable products. This would help reduce plastic waste and boost environment-conservation efforts.

The United Nations Environment Programme (UNEP) describes plastic waste as a serious environmental problem – humans produce about 400 million tonnes of plastic waste every year. Approximately 36% of all plastics produced are used in packaging, including single-use plastic products for food and beverage containers, approximately 85% of which ends up in landfills or as unregulated waste.

Researching biodegradable polymers

Dr Mofokeng’s desire to solve the waste problem in her community of Bophelong village in Qwaqwa, Free State – where community members dumped and burned all sorts of waste, including plastics – inspired her towards her field of research.

Today, her research is aimed at managing plastic waste to combat environmental and atmospheric pollution (from incineration), conserve energy, and improve water quality, including ensuring safe drinking water.

High levels of plastic waste have led to increased research into and development of biodegradable polymers as an alternative to non-biodegradable materials for short-shelf-life goods (such as packaging for fresh fruit and vegetables).

Biopolymers or biodegradable polymers, explains Dr Mofokeng, are derived from renewable resources including, but not limited to, vegetable oils, starches and animal fats. They can therefore be easily disposed of after use without harming the environment.

“My research is based on the preparation and characterisation of completely biodegradable polymers, their blends, and composites or nanocomposites filled with unmodified or modified inorganic fillers, natural fibres, as well as synthesised carbonaceous materials,” she says.

Such materials are developed for various applications, including packaging, electromagnetic interference shielding (blocking unwanted signals), and the removal of heavy metals and other contaminants from water bodies. 

“To achieve these aims, I and my small research group are preparing completely biodegradable polymer blends.”

This involves adjusting their morphology (structure) and some of their properties (thermal, thermomechanical, mechanical, and flame retardancy) to match those of petroleum-based polymers in their replacement for disposable products; by reinforcing with natural fibres, and minerals.

Biodegradable polymers can degrade within a few days to a few years depending on their source, type, and biodegradation method used, while petroleum-based polymers can exist for hundreds to thousands of years without degrading. Moreover, because biodegradable polymers are produced from natural resources, their biodegradation mainly produces carbon dioxide, water, and other non-toxic byproducts, Dr Mofokeng adds.

“Biodegradable polymers can degrade by themselves under natural environmental conditions – in one to three years – or may require human intervention to degrade where composts are prepared or conditions are controlled in order to degrade the polymers. The latter two being the fastest, where it could take days to months. In my previous research project [we] kept polylactic acid filled with short sisal fibre in plain water at 80℃, and all the tested samples degraded within 10 days.”

She and a PhD student are conducting an ongoing experiment involving three different biodegradable polymer systems exposed to different conditions outside and under soil, measuring the rate of biodegradation by mimicking the environmental conditions found in dumping sites and landfills.

Signs of biodegradation on the samples showed clearly after 14 months, with cracks, surface erosion, and a decrease in the initial weighed mass, suggesting that the polymers could be completely degraded within two to three years.

Closer to goal

Dr Mofokeng, who has been a National Research Foundation (NRF) Y2-rated researcher since 2021, says since most food outlets and restaurants in South Africa have already started using paper- and bio-based polymer materials in cutlery, straws, and takeaway packaging, the country seems to be closer to its goal of using biodegradable polymers for disposable packaging.

The UFS, too, is aiming to phase out the use of plastic bottles in the next three to five years. This will be done by installing filtered water machines in all its buildings.

“We are now left with policymakers to enforce strict laws governing production; and retail industries to use biopolymers or biodegradable polymers in disposable packaging materials,” she says.

New research

Dr Mofokeng and her group’s research is in line with the United Nations’ Sustainable Development Goals (SDGs), including ensuring good health and wellbeing (SDG3), providing clean water and sanitation (SDG6), forging sustainable cities and communities (SDG11), establishing sustainable consumption and production patterns (SDG12), and protecting life below water (SDG14).

She has been researching polymers for almost two decades, and remains passionate about her research field and educating communities. Her new research project, in collaboration with colleagues from her department, targets the removal of heavy metals and other contaminants from groundwater. Testing and water treatment is set to take place in different regions in Qwaqwa, specifically among households that collect drinking and cooking water from boreholes.

Dr Mofokeng’s research group was established in 2016 with one honours and two master’s students. She has since supervised nine honours, seven master’s and one PhD student.

She also recently established international research collaborations with the Libyan Advanced Center for Chemical Analysis and the Faculty of Technology at the University of Banja Luka in Serbia.

News Archive

B. Iur. programme in Occupational Risk Law first of its kind in the country
2010-11-26

The University of the Free State (UFS) will offer a B.Iur. degree programme in Occupational Risk Law from 2011.

This programme of the Faculty of Law is the first of its kind to be offered in South Africa and positions the UFS in the forefront of this field of study.

The programme is designed to develop and qualify professionals, knowledgeable in the field of occupational risk law as prescribed by South African legislation and international best practices. It further offers a qualification based on a well-researched basis of applicable legal principles, combined with safety, health, environmental and quality risk management principles applicable to employers and employees in a specialised industry.

The B.Iur. (Occupational Risk Law) has been developed by experts within the parameters of international comparability, according to research-based identification of career demands and requirements in the fields mentioned.

By introducing this programmesignificant progress will be made towards achieving the nationally stated objective of legal safety, health and environmental quality assurance in the workplace and within the broader community. The programme will also encompass the values and standards prescribed by the Institute of Safety Managers. This will provide them with a further step towards the regulation of the professional en ethical standards in the field of legal safety, health and environmental quality assurance.

With the programme, the UFS not only creates a unique opportunity for stakeholders and learners to add meaningful value to their careers, but also exerts a meaningful influence on the industry and society in terms of the acquisition of a most appropriate type of qualification. The B.Iur. (Occupational Risk Law)degree therefore offers a meaningful contribution towards the industry through addressing the increasing demand for career opportunities in the field of legal safety, health and environmental quality compliance.

The new programme is the result of an agreement between the faculty and its partner, IRCA Global. The university officially launched its partnership with IRCA Global, an international supplier of risk management solutions pertaining to safety, health, the environment and quality in 2008. As part of the agreement, the UFS will offer short learning programme, a diploma and a degree in Risk Management.

IRCA Global is a South African company in the international risk control and SHEQ environments with filials in Africa, Australia, India, Eastern Europe, and South America.

In the interim IRCA Global has continued with the marketing of the programme, with the result that hundreds of potential students are waiting for the launching of the programme. The faculty is geared towards offering the programme in e-learning. New modules will also be offered with the help of IRCA’s trained and skilled facilitators. The faculty also utilises the partnerships entered into with IRCA to appoint practising specialists as part-time lecturers for the occupational risk law component of the programme as well as to develop a new specialist component amongst the permanent staff.

The programme is already active and students can register for the first semester 2011 (study code 3324, programme code M3000). Direct your enquiries to Cora-Mari de Vos at 051 401 3532 or devosc@ufs.ac.za.

The programme consists of fundamental modules of the LL.B. and B.Iur., as well as short learning programmes in the Faculty of Law and specially developed core modules in occupational risk law. The B.Iur.in Occupational Risk Law enables successful candidates to enrol for applicable Post Graduate Diplomas or a cognate Honours Degree. Obtaining one of these qualifications provides the platform to articulate to Magister degrees. Horizontal articulation possibilities exist with the accredited Baccalaureus of Law (LL.B.) which is presented by several institutions in the country.

Media Release
Issued by: Lacea Loader
Director: Strategic Communication (actg)
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl@ufs.ac.za
26 November 2010

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept