Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 September 2024 | Story André Damons | Photo Supplied
Dr Puseletso Mofokeng
Dr Julia Puseletso Mofokeng, from the UFS’s Department of Chemistry, is doing research into biodegradable polymers for application in disposable product packaging.

A researcher from the University of the Free State (UFS) is contributing to the fight against plastic pollution through her research into biodegradable polymers – large, chain-like molecules – as a more environmentally friendly alternative to petroleum-based plastics.

Plastic pollution is a global environmental problem, with 19 to 23 million tonnes of plastic waste leaked into aquatic ecosystems every year.

Dr Julia Puseletso Mofokeng, Senior Lecturer and Researcher in the UFS Department of Chemistry, hopes her research into how biodegradable polymers can be used in disposable product packaging can influence the industry and policymakers to enforce the use of biopolymers or biodegradable polymers in disposable products. This would help reduce plastic waste and boost environment-conservation efforts.

The United Nations Environment Programme (UNEP) describes plastic waste as a serious environmental problem – humans produce about 400 million tonnes of plastic waste every year. Approximately 36% of all plastics produced are used in packaging, including single-use plastic products for food and beverage containers, approximately 85% of which ends up in landfills or as unregulated waste.

Researching biodegradable polymers

Dr Mofokeng’s desire to solve the waste problem in her community of Bophelong village in Qwaqwa, Free State – where community members dumped and burned all sorts of waste, including plastics – inspired her towards her field of research.

Today, her research is aimed at managing plastic waste to combat environmental and atmospheric pollution (from incineration), conserve energy, and improve water quality, including ensuring safe drinking water.

High levels of plastic waste have led to increased research into and development of biodegradable polymers as an alternative to non-biodegradable materials for short-shelf-life goods (such as packaging for fresh fruit and vegetables).

Biopolymers or biodegradable polymers, explains Dr Mofokeng, are derived from renewable resources including, but not limited to, vegetable oils, starches and animal fats. They can therefore be easily disposed of after use without harming the environment.

“My research is based on the preparation and characterisation of completely biodegradable polymers, their blends, and composites or nanocomposites filled with unmodified or modified inorganic fillers, natural fibres, as well as synthesised carbonaceous materials,” she says.

Such materials are developed for various applications, including packaging, electromagnetic interference shielding (blocking unwanted signals), and the removal of heavy metals and other contaminants from water bodies. 

“To achieve these aims, I and my small research group are preparing completely biodegradable polymer blends.”

This involves adjusting their morphology (structure) and some of their properties (thermal, thermomechanical, mechanical, and flame retardancy) to match those of petroleum-based polymers in their replacement for disposable products; by reinforcing with natural fibres, and minerals.

Biodegradable polymers can degrade within a few days to a few years depending on their source, type, and biodegradation method used, while petroleum-based polymers can exist for hundreds to thousands of years without degrading. Moreover, because biodegradable polymers are produced from natural resources, their biodegradation mainly produces carbon dioxide, water, and other non-toxic byproducts, Dr Mofokeng adds.

“Biodegradable polymers can degrade by themselves under natural environmental conditions – in one to three years – or may require human intervention to degrade where composts are prepared or conditions are controlled in order to degrade the polymers. The latter two being the fastest, where it could take days to months. In my previous research project [we] kept polylactic acid filled with short sisal fibre in plain water at 80℃, and all the tested samples degraded within 10 days.”

She and a PhD student are conducting an ongoing experiment involving three different biodegradable polymer systems exposed to different conditions outside and under soil, measuring the rate of biodegradation by mimicking the environmental conditions found in dumping sites and landfills.

Signs of biodegradation on the samples showed clearly after 14 months, with cracks, surface erosion, and a decrease in the initial weighed mass, suggesting that the polymers could be completely degraded within two to three years.

Closer to goal

Dr Mofokeng, who has been a National Research Foundation (NRF) Y2-rated researcher since 2021, says since most food outlets and restaurants in South Africa have already started using paper- and bio-based polymer materials in cutlery, straws, and takeaway packaging, the country seems to be closer to its goal of using biodegradable polymers for disposable packaging.

The UFS, too, is aiming to phase out the use of plastic bottles in the next three to five years. This will be done by installing filtered water machines in all its buildings.

“We are now left with policymakers to enforce strict laws governing production; and retail industries to use biopolymers or biodegradable polymers in disposable packaging materials,” she says.

New research

Dr Mofokeng and her group’s research is in line with the United Nations’ Sustainable Development Goals (SDGs), including ensuring good health and wellbeing (SDG3), providing clean water and sanitation (SDG6), forging sustainable cities and communities (SDG11), establishing sustainable consumption and production patterns (SDG12), and protecting life below water (SDG14).

She has been researching polymers for almost two decades, and remains passionate about her research field and educating communities. Her new research project, in collaboration with colleagues from her department, targets the removal of heavy metals and other contaminants from groundwater. Testing and water treatment is set to take place in different regions in Qwaqwa, specifically among households that collect drinking and cooking water from boreholes.

Dr Mofokeng’s research group was established in 2016 with one honours and two master’s students. She has since supervised nine honours, seven master’s and one PhD student.

She also recently established international research collaborations with the Libyan Advanced Center for Chemical Analysis and the Faculty of Technology at the University of Banja Luka in Serbia.

News Archive

Reverend Frank Chikane honours ‘Oom Bey’ at second Beyers Naudé Memorial Lecture for 2012
2012-09-11

Rev. Frank Chikane and Dr Choice Makhetha, Vice-Rector: External Relations at the UFS.
Photo: Stephen Collett
10 September 2012

The 9th Beyers Naude Memorial Lecture, a partnership initiative between the University of the Free State (UFS) and Kagiso Trust, was held on the South Campus of the university last week. The theme of the lecture focused on Collaborative partnership for social cohesion: Building of a nation with ethics.

Guest speaker, Reverend Frank Chikane, is a member of the UDF, ANC, Director-General in the Office of the President and a board member of Kagiso Trust.

In his speech, Rev. Chikane focused on the first 45 years in the life of Beyers Naudé, sketching a picture of a man who lived for what he believes in. When this former minister of the South African Dutch Reformed Church and member of the Broederbond, decided to question the morality of the Apartheid government after the Sharpeville Massacre in 1960, he made some changes in his beliefs and started to play a big role in the struggle against apartheid.

“If one know about ‘Oom Bey’s’ earlier life, you will see how radical his contribution was in turning South Africa from a country on the brink of destruction to a country of peace. ‘Oom Bey’ must be seen as a role model, someone we can aspire to be in South Africa today,” Rev. Chikane said.

“From his legacy one sees elements of someone building a nation with ethics.

“He took sides with the poor against an unjust system. Power breaks cohesion. It makes people not to think,” Rev. Chikane said.

If Afrikaners and black people stood together after the South African War (Anglo-Boer War), we would have talked a different language today. However, they did not. Afrikaners stood together, excluding black people and cohesion between all races was destructed. ‘Oom Bey’ tried to build relationships between people from all races in South Africa in an effort to create peace amongst all people. He was alienated from the Broederbond and defrockedrom the church.

In his speech, Rev. Chikane also said that South Africa did not succeed in collaborative partnerships in terms of the economy. “We need collaborative action to change our economy. This specific failure can destroy all that we have built together.”

“All South Africans can be like ‘Oom Bey” and make a contribution, especially in terms of the economy. To deal with this challenge, we can all contribute. This is important because due to a poor economy, many people are desperate and desperate people can destroy any relationship that we might have built so far.”

At this event, the university and Kagiso Trust also announced the winners of a poetry and essay competition that coincided with this last Beyers Naudé lecture for 2012. The award ceremony looked at the creativity of the learners, how they expressed themselves as well as the novelty of their work. Students as well as learners from schools in the Free State participated in the competition and first, second and third place winners received cash prizes as well as a book from Rev. Frank Chikane for their brilliant work.
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept