Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 September 2024 | Story André Damons | Photo Supplied
Dr Puseletso Mofokeng
Dr Julia Puseletso Mofokeng, from the UFS’s Department of Chemistry, is doing research into biodegradable polymers for application in disposable product packaging.

A researcher from the University of the Free State (UFS) is contributing to the fight against plastic pollution through her research into biodegradable polymers – large, chain-like molecules – as a more environmentally friendly alternative to petroleum-based plastics.

Plastic pollution is a global environmental problem, with 19 to 23 million tonnes of plastic waste leaked into aquatic ecosystems every year.

Dr Julia Puseletso Mofokeng, Senior Lecturer and Researcher in the UFS Department of Chemistry, hopes her research into how biodegradable polymers can be used in disposable product packaging can influence the industry and policymakers to enforce the use of biopolymers or biodegradable polymers in disposable products. This would help reduce plastic waste and boost environment-conservation efforts.

The United Nations Environment Programme (UNEP) describes plastic waste as a serious environmental problem – humans produce about 400 million tonnes of plastic waste every year. Approximately 36% of all plastics produced are used in packaging, including single-use plastic products for food and beverage containers, approximately 85% of which ends up in landfills or as unregulated waste.

Researching biodegradable polymers

Dr Mofokeng’s desire to solve the waste problem in her community of Bophelong village in Qwaqwa, Free State – where community members dumped and burned all sorts of waste, including plastics – inspired her towards her field of research.

Today, her research is aimed at managing plastic waste to combat environmental and atmospheric pollution (from incineration), conserve energy, and improve water quality, including ensuring safe drinking water.

High levels of plastic waste have led to increased research into and development of biodegradable polymers as an alternative to non-biodegradable materials for short-shelf-life goods (such as packaging for fresh fruit and vegetables).

Biopolymers or biodegradable polymers, explains Dr Mofokeng, are derived from renewable resources including, but not limited to, vegetable oils, starches and animal fats. They can therefore be easily disposed of after use without harming the environment.

“My research is based on the preparation and characterisation of completely biodegradable polymers, their blends, and composites or nanocomposites filled with unmodified or modified inorganic fillers, natural fibres, as well as synthesised carbonaceous materials,” she says.

Such materials are developed for various applications, including packaging, electromagnetic interference shielding (blocking unwanted signals), and the removal of heavy metals and other contaminants from water bodies. 

“To achieve these aims, I and my small research group are preparing completely biodegradable polymer blends.”

This involves adjusting their morphology (structure) and some of their properties (thermal, thermomechanical, mechanical, and flame retardancy) to match those of petroleum-based polymers in their replacement for disposable products; by reinforcing with natural fibres, and minerals.

Biodegradable polymers can degrade within a few days to a few years depending on their source, type, and biodegradation method used, while petroleum-based polymers can exist for hundreds to thousands of years without degrading. Moreover, because biodegradable polymers are produced from natural resources, their biodegradation mainly produces carbon dioxide, water, and other non-toxic byproducts, Dr Mofokeng adds.

“Biodegradable polymers can degrade by themselves under natural environmental conditions – in one to three years – or may require human intervention to degrade where composts are prepared or conditions are controlled in order to degrade the polymers. The latter two being the fastest, where it could take days to months. In my previous research project [we] kept polylactic acid filled with short sisal fibre in plain water at 80℃, and all the tested samples degraded within 10 days.”

She and a PhD student are conducting an ongoing experiment involving three different biodegradable polymer systems exposed to different conditions outside and under soil, measuring the rate of biodegradation by mimicking the environmental conditions found in dumping sites and landfills.

Signs of biodegradation on the samples showed clearly after 14 months, with cracks, surface erosion, and a decrease in the initial weighed mass, suggesting that the polymers could be completely degraded within two to three years.

Closer to goal

Dr Mofokeng, who has been a National Research Foundation (NRF) Y2-rated researcher since 2021, says since most food outlets and restaurants in South Africa have already started using paper- and bio-based polymer materials in cutlery, straws, and takeaway packaging, the country seems to be closer to its goal of using biodegradable polymers for disposable packaging.

The UFS, too, is aiming to phase out the use of plastic bottles in the next three to five years. This will be done by installing filtered water machines in all its buildings.

“We are now left with policymakers to enforce strict laws governing production; and retail industries to use biopolymers or biodegradable polymers in disposable packaging materials,” she says.

New research

Dr Mofokeng and her group’s research is in line with the United Nations’ Sustainable Development Goals (SDGs), including ensuring good health and wellbeing (SDG3), providing clean water and sanitation (SDG6), forging sustainable cities and communities (SDG11), establishing sustainable consumption and production patterns (SDG12), and protecting life below water (SDG14).

She has been researching polymers for almost two decades, and remains passionate about her research field and educating communities. Her new research project, in collaboration with colleagues from her department, targets the removal of heavy metals and other contaminants from groundwater. Testing and water treatment is set to take place in different regions in Qwaqwa, specifically among households that collect drinking and cooking water from boreholes.

Dr Mofokeng’s research group was established in 2016 with one honours and two master’s students. She has since supervised nine honours, seven master’s and one PhD student.

She also recently established international research collaborations with the Libyan Advanced Center for Chemical Analysis and the Faculty of Technology at the University of Banja Luka in Serbia.

News Archive

UFS academic discusses Dutch, Afrikaans and African languages
2006-05-22

During the colloquium presented in Belgium by the Province Antwerp were from the left Prof Pol Cuvelier (University of Antwerp), Prof Theo du Plessis (Director: Unit for Language Management at the UFS), Mr Ludo Helsen (Permanent Deputy: Province of Antwerp) and Mr Jean-Pierre Rondas (Flemish radio journalist).

________________________________________________

UFS academic discusses Dutch, Afrikaans and African languages at international conference

Prof Theo du Plessis, Director of the Unit for Language Management at the University of the Free State (UFS), was the main speaker at a colloquium titled “Routes:  Where to now? - Een traject van het Nederlands naar het Afrikaans en de Afrikatalen”, which was recently presented by the Province Antwerp in Belgium.

 The aim of the colloquium was to discuss the future cooperation in the field of language between the Province Antwerp and South Africa. 

 The Province Antwerp is already involved with projects in South Africa.  One of these projects is the Multilingual Information Development Programme (MIDP), a partnership project between the UFS and the Free State Province that is mainly funded by the Province Antwerp. 

 The project has been running since 1999 and was recently in the news with the presentation of a symposium on multilingualism and exclusion on the Main Campus of the UFS.  It is hoped that the Routes colloquium will indicate new stages on which can be added to the already successful cooperation in the area of language.

 Prof Du Plessis’s presentation titled “Nederlands, Afrikaans en die Afrikatale – kan samewerking slaag? Die geval MIDP in die Vrystaat”, investigated the successes that have been made with the MIDP.  He discussed two possible approaches to cooperation in the areas of language, that of a sentimentalistic  approach against an instrumentalistic approach. 

Cooperation in the first approach makes language the aim.  In the second approach language is used as a means to a greater aim.  According to Prof du Plessis the first approach is driven by a romantisised idea about the relation between the Flemish and Afrikaans speaking people, which may unfortunately polarise the position of Afrikaans in South Africa even further.

 He argues that, given the time that we are in, the second approach will deliver more constructive results as language can among others be used for to further  democracy in South Africa.   This can happen by cooperation in the institutionalising of multilingualism in our society.  The more languages are used in education, law and government administration, the more we can be assured a successful democracy.

 The Routes colloquium was facilitated by the well-known Flemish radio journalist, Jean-Pierre Rondas. About twenty South African and Flemish language specialists took part in the colloquium.  Dr Fritz Kok, outgoing chief executive officer of the ATKV took part in the opening ceremony and Dr Neville Alexander from the University of Cape Town and well-known activist for multilingualism in South Africa was also one of the main speakers.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept