Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 September 2024 | Story André Damons | Photo Supplied
Dr Puseletso Mofokeng
Dr Julia Puseletso Mofokeng, from the UFS’s Department of Chemistry, is doing research into biodegradable polymers for application in disposable product packaging.

A researcher from the University of the Free State (UFS) is contributing to the fight against plastic pollution through her research into biodegradable polymers – large, chain-like molecules – as a more environmentally friendly alternative to petroleum-based plastics.

Plastic pollution is a global environmental problem, with 19 to 23 million tonnes of plastic waste leaked into aquatic ecosystems every year.

Dr Julia Puseletso Mofokeng, Senior Lecturer and Researcher in the UFS Department of Chemistry, hopes her research into how biodegradable polymers can be used in disposable product packaging can influence the industry and policymakers to enforce the use of biopolymers or biodegradable polymers in disposable products. This would help reduce plastic waste and boost environment-conservation efforts.

The United Nations Environment Programme (UNEP) describes plastic waste as a serious environmental problem – humans produce about 400 million tonnes of plastic waste every year. Approximately 36% of all plastics produced are used in packaging, including single-use plastic products for food and beverage containers, approximately 85% of which ends up in landfills or as unregulated waste.

Researching biodegradable polymers

Dr Mofokeng’s desire to solve the waste problem in her community of Bophelong village in Qwaqwa, Free State – where community members dumped and burned all sorts of waste, including plastics – inspired her towards her field of research.

Today, her research is aimed at managing plastic waste to combat environmental and atmospheric pollution (from incineration), conserve energy, and improve water quality, including ensuring safe drinking water.

High levels of plastic waste have led to increased research into and development of biodegradable polymers as an alternative to non-biodegradable materials for short-shelf-life goods (such as packaging for fresh fruit and vegetables).

Biopolymers or biodegradable polymers, explains Dr Mofokeng, are derived from renewable resources including, but not limited to, vegetable oils, starches and animal fats. They can therefore be easily disposed of after use without harming the environment.

“My research is based on the preparation and characterisation of completely biodegradable polymers, their blends, and composites or nanocomposites filled with unmodified or modified inorganic fillers, natural fibres, as well as synthesised carbonaceous materials,” she says.

Such materials are developed for various applications, including packaging, electromagnetic interference shielding (blocking unwanted signals), and the removal of heavy metals and other contaminants from water bodies. 

“To achieve these aims, I and my small research group are preparing completely biodegradable polymer blends.”

This involves adjusting their morphology (structure) and some of their properties (thermal, thermomechanical, mechanical, and flame retardancy) to match those of petroleum-based polymers in their replacement for disposable products; by reinforcing with natural fibres, and minerals.

Biodegradable polymers can degrade within a few days to a few years depending on their source, type, and biodegradation method used, while petroleum-based polymers can exist for hundreds to thousands of years without degrading. Moreover, because biodegradable polymers are produced from natural resources, their biodegradation mainly produces carbon dioxide, water, and other non-toxic byproducts, Dr Mofokeng adds.

“Biodegradable polymers can degrade by themselves under natural environmental conditions – in one to three years – or may require human intervention to degrade where composts are prepared or conditions are controlled in order to degrade the polymers. The latter two being the fastest, where it could take days to months. In my previous research project [we] kept polylactic acid filled with short sisal fibre in plain water at 80℃, and all the tested samples degraded within 10 days.”

She and a PhD student are conducting an ongoing experiment involving three different biodegradable polymer systems exposed to different conditions outside and under soil, measuring the rate of biodegradation by mimicking the environmental conditions found in dumping sites and landfills.

Signs of biodegradation on the samples showed clearly after 14 months, with cracks, surface erosion, and a decrease in the initial weighed mass, suggesting that the polymers could be completely degraded within two to three years.

Closer to goal

Dr Mofokeng, who has been a National Research Foundation (NRF) Y2-rated researcher since 2021, says since most food outlets and restaurants in South Africa have already started using paper- and bio-based polymer materials in cutlery, straws, and takeaway packaging, the country seems to be closer to its goal of using biodegradable polymers for disposable packaging.

The UFS, too, is aiming to phase out the use of plastic bottles in the next three to five years. This will be done by installing filtered water machines in all its buildings.

“We are now left with policymakers to enforce strict laws governing production; and retail industries to use biopolymers or biodegradable polymers in disposable packaging materials,” she says.

New research

Dr Mofokeng and her group’s research is in line with the United Nations’ Sustainable Development Goals (SDGs), including ensuring good health and wellbeing (SDG3), providing clean water and sanitation (SDG6), forging sustainable cities and communities (SDG11), establishing sustainable consumption and production patterns (SDG12), and protecting life below water (SDG14).

She has been researching polymers for almost two decades, and remains passionate about her research field and educating communities. Her new research project, in collaboration with colleagues from her department, targets the removal of heavy metals and other contaminants from groundwater. Testing and water treatment is set to take place in different regions in Qwaqwa, specifically among households that collect drinking and cooking water from boreholes.

Dr Mofokeng’s research group was established in 2016 with one honours and two master’s students. She has since supervised nine honours, seven master’s and one PhD student.

She also recently established international research collaborations with the Libyan Advanced Center for Chemical Analysis and the Faculty of Technology at the University of Banja Luka in Serbia.

News Archive

UFS Council unanimously reappoints Dr Khotso Mokhele as Chancellor
2015-04-02

 

Dr Khotso Mokhele, Chancellor of the University of the Free State

The Council of the University of the Free State (UFS) unanimously reappointed Dr Khotso Mokhele as Chancellor during its quarterly meeting held on 13 March 2015. He was first appointed in this portfolio by the Council on 4 June 2010.

“It is an honour for the Council to reappoint someone of this stature as Chancellor of the UFS. With his solid academic background and high profile in the business world, Dr Mokhele has been a great asset to the UFS. On behalf of the Council and the university community, I extend a word of appreciation for the work he has done during his first term as Chancellor of the UFS. He is an exceptional leader, and the university community is looking forward to have him as Chancellor for a second term,” said Judge Ian van der Merwe, Chairperson of the UFS Council.

Dr Mokhele was awarded a BSc Agriculture from Fort Hare University, and continued his studies at the University of California Davis (USA) on the Fulbright-Hays Scholarship Programme, completing his MSc (Food Science) and PhD (Microbiology). He was subsequently a postdoctoral fellow at Johns Hopkins University School of Medicine (USA) and the University of Pennsylvania School of Medicine (USA). Dr Mokhele is the recipient of honorary doctorates from nine South African universities including the UFS, and from Rutgers University in the USA.

He was Chairman of the Rhodes Scholarship Selection Committee for Botswana, Malawi, Namibia, Lesotho and Swaziland (2007-2011), and served on the South Africa at Large Rhodes Scholarship Selection Committee for more than 10 years. As President and Chief Executive Officer (CEO) of the Foundation for Research Development (1996-1999) and the NRF from 1999 to 2006, Dr Mokhele played a central role in providing visionary and strategic direction to the South African science system. He was the Founder President of the Academy of Science of South Africa (ASSAf), Founder President and CEO of the National Research Foundation (NRF), Chairperson of the Economic Advisory Council to the Premier of the Free State (2001-2004), and a member of the Advisory Council on Innovation to the Minister of Science and Technology (2003-2007). His role in securing government and international support for the Southern African Large Telescope Project (SALT) is evidence of his dedication to science in South Africa. The success of this project laid the basis for South Africa being selected to host more than 70% of the Square Kilometre Array, an international mega telescope for radio astronomy.

In recognition of his contribution to the development of science, he was the recipient of the Technology Top 100 Lifetime Achievers Award in 2009 and the National Science and Technology Forum Award in 2005. His role in science is recognised internationally. He was an elected Vice-President: Scientific Planning and Review of the International Council for Science and Chairperson of its Committee for Scientific Planning and Review (2005-2008) as well as a member of the Committee on Developing and Transition Economy Countries of the International Social Science Council (2008-2010). He also represented South Africa on the executive board of UNESCO, and was awarded the Member Legion of Honour of the Republic of France for his work in strengthening scientific ties between South Africa and France.

Dr Mokhele currently serves as Special Advisor to the Minister of Science and Technology, the Honourable Naledi Pandor. His current corporate positions include: Non-Executive Chairman: Board of Directors, Impala Platinum Holdings Ltd (Implats); Lead Independent Non-Executive Director: African Oxygen Ltd (Afrox); Non-Executive Director of Zimbabwe Platinum Holdings Ltd (Zimplats); Hans Merensky Holdings Ltd; and Tiger Brands Ltd. He is the President of the Hans Merensky Foundation (South Africa) and a Trustee of SciDev.Net (a web-based scientific magazine based in London, UK) and Start International Inc (USA).

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept