Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 September 2024 | Story André Damons | Photo Supplied
Dr Puseletso Mofokeng
Dr Julia Puseletso Mofokeng, from the UFS’s Department of Chemistry, is doing research into biodegradable polymers for application in disposable product packaging.

A researcher from the University of the Free State (UFS) is contributing to the fight against plastic pollution through her research into biodegradable polymers – large, chain-like molecules – as a more environmentally friendly alternative to petroleum-based plastics.

Plastic pollution is a global environmental problem, with 19 to 23 million tonnes of plastic waste leaked into aquatic ecosystems every year.

Dr Julia Puseletso Mofokeng, Senior Lecturer and Researcher in the UFS Department of Chemistry, hopes her research into how biodegradable polymers can be used in disposable product packaging can influence the industry and policymakers to enforce the use of biopolymers or biodegradable polymers in disposable products. This would help reduce plastic waste and boost environment-conservation efforts.

The United Nations Environment Programme (UNEP) describes plastic waste as a serious environmental problem – humans produce about 400 million tonnes of plastic waste every year. Approximately 36% of all plastics produced are used in packaging, including single-use plastic products for food and beverage containers, approximately 85% of which ends up in landfills or as unregulated waste.

Researching biodegradable polymers

Dr Mofokeng’s desire to solve the waste problem in her community of Bophelong village in Qwaqwa, Free State – where community members dumped and burned all sorts of waste, including plastics – inspired her towards her field of research.

Today, her research is aimed at managing plastic waste to combat environmental and atmospheric pollution (from incineration), conserve energy, and improve water quality, including ensuring safe drinking water.

High levels of plastic waste have led to increased research into and development of biodegradable polymers as an alternative to non-biodegradable materials for short-shelf-life goods (such as packaging for fresh fruit and vegetables).

Biopolymers or biodegradable polymers, explains Dr Mofokeng, are derived from renewable resources including, but not limited to, vegetable oils, starches and animal fats. They can therefore be easily disposed of after use without harming the environment.

“My research is based on the preparation and characterisation of completely biodegradable polymers, their blends, and composites or nanocomposites filled with unmodified or modified inorganic fillers, natural fibres, as well as synthesised carbonaceous materials,” she says.

Such materials are developed for various applications, including packaging, electromagnetic interference shielding (blocking unwanted signals), and the removal of heavy metals and other contaminants from water bodies. 

“To achieve these aims, I and my small research group are preparing completely biodegradable polymer blends.”

This involves adjusting their morphology (structure) and some of their properties (thermal, thermomechanical, mechanical, and flame retardancy) to match those of petroleum-based polymers in their replacement for disposable products; by reinforcing with natural fibres, and minerals.

Biodegradable polymers can degrade within a few days to a few years depending on their source, type, and biodegradation method used, while petroleum-based polymers can exist for hundreds to thousands of years without degrading. Moreover, because biodegradable polymers are produced from natural resources, their biodegradation mainly produces carbon dioxide, water, and other non-toxic byproducts, Dr Mofokeng adds.

“Biodegradable polymers can degrade by themselves under natural environmental conditions – in one to three years – or may require human intervention to degrade where composts are prepared or conditions are controlled in order to degrade the polymers. The latter two being the fastest, where it could take days to months. In my previous research project [we] kept polylactic acid filled with short sisal fibre in plain water at 80℃, and all the tested samples degraded within 10 days.”

She and a PhD student are conducting an ongoing experiment involving three different biodegradable polymer systems exposed to different conditions outside and under soil, measuring the rate of biodegradation by mimicking the environmental conditions found in dumping sites and landfills.

Signs of biodegradation on the samples showed clearly after 14 months, with cracks, surface erosion, and a decrease in the initial weighed mass, suggesting that the polymers could be completely degraded within two to three years.

Closer to goal

Dr Mofokeng, who has been a National Research Foundation (NRF) Y2-rated researcher since 2021, says since most food outlets and restaurants in South Africa have already started using paper- and bio-based polymer materials in cutlery, straws, and takeaway packaging, the country seems to be closer to its goal of using biodegradable polymers for disposable packaging.

The UFS, too, is aiming to phase out the use of plastic bottles in the next three to five years. This will be done by installing filtered water machines in all its buildings.

“We are now left with policymakers to enforce strict laws governing production; and retail industries to use biopolymers or biodegradable polymers in disposable packaging materials,” she says.

New research

Dr Mofokeng and her group’s research is in line with the United Nations’ Sustainable Development Goals (SDGs), including ensuring good health and wellbeing (SDG3), providing clean water and sanitation (SDG6), forging sustainable cities and communities (SDG11), establishing sustainable consumption and production patterns (SDG12), and protecting life below water (SDG14).

She has been researching polymers for almost two decades, and remains passionate about her research field and educating communities. Her new research project, in collaboration with colleagues from her department, targets the removal of heavy metals and other contaminants from groundwater. Testing and water treatment is set to take place in different regions in Qwaqwa, specifically among households that collect drinking and cooking water from boreholes.

Dr Mofokeng’s research group was established in 2016 with one honours and two master’s students. She has since supervised nine honours, seven master’s and one PhD student.

She also recently established international research collaborations with the Libyan Advanced Center for Chemical Analysis and the Faculty of Technology at the University of Banja Luka in Serbia.

News Archive

Graduates challenged to fulfil their leadership obligations
2015-12-14



Procession frontline: seen making their way to the graduation ceremony are from left: Dr Khotso Mokhele (Chancellor of the UFS), Prof Busisiwe Bhengu (Chairperson of the South African Nursing Council), and Prof Jonathan Jansen (Vice-Chancellor of the UFS).
Photo: Johan Roux

The time for one-dimensional discourse was over, said Professor Busisiwe Bhengu, the guest speaker at this year’s Summer Graduation. Practical implementation of change was the step forward in forging the path into a brighter South Africa future.

During both the morning and afternoon ceremonies held at the University of the Free State (UFS) Bloemfontein Campus on 10 December 2015, the Chairperson of the South African Nursing Council, and Associate Professor at the University of KwaZulu-Natal, challenged the newly-graduated alumni to rise to the occasion, and be a part of the solution to our country’s diverse challenges.

Some of the pervasive hardships she highlighted were human immunodeficiency virus (HIV) and tuberculosis (TB), the escalating number of orphans and child-headed households, and the human resource shortages resulting from an ageing generation which is exiting the employment system through retirement.

Prior to dissolving the congregations, Dr Khotso Mokhele, the Chancellor of the UFS, said: “I was caught by the leadership challenge she [Prof Bhengu] threw out at the graduates because we indeed need courageous, creative and innovative leaders moving forward,” he said.

Dr Mokhele touched on South Africa’s dwindling economy, the leadership issues engulfing the government currently, the #FeesMustFall movement, and how students led a difficult dialogue and dictated the country’s trajectory as regards education, as well as the water scarcity we are facing. In closing, he warned that the graduates had lost the luxury of feeling led because of the fact that they now have a leadership obligation to fulfil.

Highlights of the day

Amongst 102 graduates from the UFS School of Medicine were two brothers from the Free State, Johann and Rudi Westraad who followed each other’s passion to become doctors.

Deputy Registrar at the UFS, Elna Van Pletzen, graduated with a Master’s in Higher Education Studies. Her thesis titled ”The implications of current legislative changes for academic freedom and institutional autonomy of South African higher education institutions”, focused on the amendment of Higher Education and Training Laws Amendment Act of 2012. In it, she tackled the subjects of academic freedom and the relationship between government and higher education institutions. Coincidently, her research was produced at a time when the subject of university autonomy was on the national agenda.

The occasion was not only a celebration of the students; teachers were also recognised for their dedication to quality education. Prof Jonathan Jansen, Vice-Chancellor and Rector of the UFS congratulated Dr Louise van den Berg (Faculty of Health Sciences) as well as Naquita Fernandes and Salomien Boshoff (both from the Faculty of Economic and Management Sciences) for their outstanding achievements. At a recent ceremony, Dr Van den Berg received the Vice-Chancellor’s Award for an individual teacher, and the Vice-Chancellor’s Award for the best teaching team was presented to Fernandes and Boshoff.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept