Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 September 2024 | Story André Damons | Photo Supplied
Dr Puseletso Mofokeng
Dr Julia Puseletso Mofokeng, from the UFS’s Department of Chemistry, is doing research into biodegradable polymers for application in disposable product packaging.

A researcher from the University of the Free State (UFS) is contributing to the fight against plastic pollution through her research into biodegradable polymers – large, chain-like molecules – as a more environmentally friendly alternative to petroleum-based plastics.

Plastic pollution is a global environmental problem, with 19 to 23 million tonnes of plastic waste leaked into aquatic ecosystems every year.

Dr Julia Puseletso Mofokeng, Senior Lecturer and Researcher in the UFS Department of Chemistry, hopes her research into how biodegradable polymers can be used in disposable product packaging can influence the industry and policymakers to enforce the use of biopolymers or biodegradable polymers in disposable products. This would help reduce plastic waste and boost environment-conservation efforts.

The United Nations Environment Programme (UNEP) describes plastic waste as a serious environmental problem – humans produce about 400 million tonnes of plastic waste every year. Approximately 36% of all plastics produced are used in packaging, including single-use plastic products for food and beverage containers, approximately 85% of which ends up in landfills or as unregulated waste.

Researching biodegradable polymers

Dr Mofokeng’s desire to solve the waste problem in her community of Bophelong village in Qwaqwa, Free State – where community members dumped and burned all sorts of waste, including plastics – inspired her towards her field of research.

Today, her research is aimed at managing plastic waste to combat environmental and atmospheric pollution (from incineration), conserve energy, and improve water quality, including ensuring safe drinking water.

High levels of plastic waste have led to increased research into and development of biodegradable polymers as an alternative to non-biodegradable materials for short-shelf-life goods (such as packaging for fresh fruit and vegetables).

Biopolymers or biodegradable polymers, explains Dr Mofokeng, are derived from renewable resources including, but not limited to, vegetable oils, starches and animal fats. They can therefore be easily disposed of after use without harming the environment.

“My research is based on the preparation and characterisation of completely biodegradable polymers, their blends, and composites or nanocomposites filled with unmodified or modified inorganic fillers, natural fibres, as well as synthesised carbonaceous materials,” she says.

Such materials are developed for various applications, including packaging, electromagnetic interference shielding (blocking unwanted signals), and the removal of heavy metals and other contaminants from water bodies. 

“To achieve these aims, I and my small research group are preparing completely biodegradable polymer blends.”

This involves adjusting their morphology (structure) and some of their properties (thermal, thermomechanical, mechanical, and flame retardancy) to match those of petroleum-based polymers in their replacement for disposable products; by reinforcing with natural fibres, and minerals.

Biodegradable polymers can degrade within a few days to a few years depending on their source, type, and biodegradation method used, while petroleum-based polymers can exist for hundreds to thousands of years without degrading. Moreover, because biodegradable polymers are produced from natural resources, their biodegradation mainly produces carbon dioxide, water, and other non-toxic byproducts, Dr Mofokeng adds.

“Biodegradable polymers can degrade by themselves under natural environmental conditions – in one to three years – or may require human intervention to degrade where composts are prepared or conditions are controlled in order to degrade the polymers. The latter two being the fastest, where it could take days to months. In my previous research project [we] kept polylactic acid filled with short sisal fibre in plain water at 80℃, and all the tested samples degraded within 10 days.”

She and a PhD student are conducting an ongoing experiment involving three different biodegradable polymer systems exposed to different conditions outside and under soil, measuring the rate of biodegradation by mimicking the environmental conditions found in dumping sites and landfills.

Signs of biodegradation on the samples showed clearly after 14 months, with cracks, surface erosion, and a decrease in the initial weighed mass, suggesting that the polymers could be completely degraded within two to three years.

Closer to goal

Dr Mofokeng, who has been a National Research Foundation (NRF) Y2-rated researcher since 2021, says since most food outlets and restaurants in South Africa have already started using paper- and bio-based polymer materials in cutlery, straws, and takeaway packaging, the country seems to be closer to its goal of using biodegradable polymers for disposable packaging.

The UFS, too, is aiming to phase out the use of plastic bottles in the next three to five years. This will be done by installing filtered water machines in all its buildings.

“We are now left with policymakers to enforce strict laws governing production; and retail industries to use biopolymers or biodegradable polymers in disposable packaging materials,” she says.

New research

Dr Mofokeng and her group’s research is in line with the United Nations’ Sustainable Development Goals (SDGs), including ensuring good health and wellbeing (SDG3), providing clean water and sanitation (SDG6), forging sustainable cities and communities (SDG11), establishing sustainable consumption and production patterns (SDG12), and protecting life below water (SDG14).

She has been researching polymers for almost two decades, and remains passionate about her research field and educating communities. Her new research project, in collaboration with colleagues from her department, targets the removal of heavy metals and other contaminants from groundwater. Testing and water treatment is set to take place in different regions in Qwaqwa, specifically among households that collect drinking and cooking water from boreholes.

Dr Mofokeng’s research group was established in 2016 with one honours and two master’s students. She has since supervised nine honours, seven master’s and one PhD student.

She also recently established international research collaborations with the Libyan Advanced Center for Chemical Analysis and the Faculty of Technology at the University of Banja Luka in Serbia.

News Archive

UFS researcher selected as emerging voice
2016-11-03

Description: Andre Janse van Rensburg  Tags: Andre Janse van Rensburg

André Janse van Rensburg, researcher at the
Centre for Health Systems Research and Development
at the University of the Free State, will be spending
almost three weeks in Vancouver, Canada. He will be
attending the Emerging Voices for Global Health programme
and Global Symposium on Health Systems Research.
Photo: Jóhann Thormählen

His research on the implementation of the Integrated School Health Programme (ISHP) in rural South Africa led to André Janse van Rensburg being selected to become part of the Emerging Voices for Global Health (EV4GH) group.

It is a collection of young, promising health policy and systems researchers, decision-makers and other health system professionals. A total of 222 applications from 50 countries were received for this programme, from 3-19 November 2016 in Vancouver, Canada.

The EV4GH is linked to the fourth Global Symposium on Health Systems Research (HSR2016), from 14-18 November 2016. It also taking place in Vancouver and Janse van Rensburg will be taking part, thanks to his research on the ISHP in the Maluti-a-Phofung area. He is a researcher at the Centre for Health Systems Research & Development (CHSR&D) at the University of the Free State (UFS).

The theme of the HSR2016 is Resilient and Responsive Health Systems for a Changing World. It is organised every two years by Health Systems Global to bring together roleplayers involved in health systems and policy research and practice.

Janse van Rensburg also part of Health Systems Global network
The EV4GH goals relate to the strengthening of global health systems and policies, particularly from the Global South (low-to-middle income countries with chronic health system challenges). The initiative involves workshops, presentations, and interactive discussions related to global health problems and solutions.

As an EV4GH alumni, Janse van Rensburg will become part of the Health Systems Global network. Partnering institutions include public health institutes from China, India, South Africa, Belgium, and the UK.

“The EV4GH is for young, promising health
policy and systems researchers, decision-makers
and other health system professionals.”

Research aims to explore implementation of schools health programme
In 2012, the ISHP was introduced in South Africa. This policy forms part of the government's Primary Health Care Re-engineering Programme and is designed to offer a comprehensive and integrated package of health services to all pupils across all educational phases.

Janse van Rensburg, along with Dr Asta Rau, Director of the CHSR&D, aimed to explore and describe implementation of the ISHP. The goals were to assess the capacity and resources available for implementation, identify barriers that hamper implementation, detect enabling factors and successful aspects of implementation and disseminate best practices in, and barriers to, ISPH implementation with recommendations to policymakers, managers and practitioners.

“A lot of people were saying they don’t
have enough resources to adequately
implement the policy as it is supposed to
be implemented.”

Findings of project in Maluti-a-Phofung area
Janse van Rensburg said the ISHP had various strengths. “People were impressed with the integrated nature of the policy and the way people collaborated across disciplines and departments. The school team were found to work very well with the schools and gel well with the educators and principles.”

He said the main weakness of the implementation was resources. “A lot of people were saying they don’t have enough resources to adequately implement the policy as it is supposed to be implemented.

“Another drawback is the referral, because once you identify a problem with a child, the child needs to be referred to a hospital or clinic.” He means once a child gets referred, there is no way of knowing whether the child has been helped and in many cases there is no specialist at the hospital.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept