Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 September 2024 | Story André Damons | Photo Supplied
Dr Puseletso Mofokeng
Dr Julia Puseletso Mofokeng, from the UFS’s Department of Chemistry, is doing research into biodegradable polymers for application in disposable product packaging.

A researcher from the University of the Free State (UFS) is contributing to the fight against plastic pollution through her research into biodegradable polymers – large, chain-like molecules – as a more environmentally friendly alternative to petroleum-based plastics.

Plastic pollution is a global environmental problem, with 19 to 23 million tonnes of plastic waste leaked into aquatic ecosystems every year.

Dr Julia Puseletso Mofokeng, Senior Lecturer and Researcher in the UFS Department of Chemistry, hopes her research into how biodegradable polymers can be used in disposable product packaging can influence the industry and policymakers to enforce the use of biopolymers or biodegradable polymers in disposable products. This would help reduce plastic waste and boost environment-conservation efforts.

The United Nations Environment Programme (UNEP) describes plastic waste as a serious environmental problem – humans produce about 400 million tonnes of plastic waste every year. Approximately 36% of all plastics produced are used in packaging, including single-use plastic products for food and beverage containers, approximately 85% of which ends up in landfills or as unregulated waste.

Researching biodegradable polymers

Dr Mofokeng’s desire to solve the waste problem in her community of Bophelong village in Qwaqwa, Free State – where community members dumped and burned all sorts of waste, including plastics – inspired her towards her field of research.

Today, her research is aimed at managing plastic waste to combat environmental and atmospheric pollution (from incineration), conserve energy, and improve water quality, including ensuring safe drinking water.

High levels of plastic waste have led to increased research into and development of biodegradable polymers as an alternative to non-biodegradable materials for short-shelf-life goods (such as packaging for fresh fruit and vegetables).

Biopolymers or biodegradable polymers, explains Dr Mofokeng, are derived from renewable resources including, but not limited to, vegetable oils, starches and animal fats. They can therefore be easily disposed of after use without harming the environment.

“My research is based on the preparation and characterisation of completely biodegradable polymers, their blends, and composites or nanocomposites filled with unmodified or modified inorganic fillers, natural fibres, as well as synthesised carbonaceous materials,” she says.

Such materials are developed for various applications, including packaging, electromagnetic interference shielding (blocking unwanted signals), and the removal of heavy metals and other contaminants from water bodies. 

“To achieve these aims, I and my small research group are preparing completely biodegradable polymer blends.”

This involves adjusting their morphology (structure) and some of their properties (thermal, thermomechanical, mechanical, and flame retardancy) to match those of petroleum-based polymers in their replacement for disposable products; by reinforcing with natural fibres, and minerals.

Biodegradable polymers can degrade within a few days to a few years depending on their source, type, and biodegradation method used, while petroleum-based polymers can exist for hundreds to thousands of years without degrading. Moreover, because biodegradable polymers are produced from natural resources, their biodegradation mainly produces carbon dioxide, water, and other non-toxic byproducts, Dr Mofokeng adds.

“Biodegradable polymers can degrade by themselves under natural environmental conditions – in one to three years – or may require human intervention to degrade where composts are prepared or conditions are controlled in order to degrade the polymers. The latter two being the fastest, where it could take days to months. In my previous research project [we] kept polylactic acid filled with short sisal fibre in plain water at 80℃, and all the tested samples degraded within 10 days.”

She and a PhD student are conducting an ongoing experiment involving three different biodegradable polymer systems exposed to different conditions outside and under soil, measuring the rate of biodegradation by mimicking the environmental conditions found in dumping sites and landfills.

Signs of biodegradation on the samples showed clearly after 14 months, with cracks, surface erosion, and a decrease in the initial weighed mass, suggesting that the polymers could be completely degraded within two to three years.

Closer to goal

Dr Mofokeng, who has been a National Research Foundation (NRF) Y2-rated researcher since 2021, says since most food outlets and restaurants in South Africa have already started using paper- and bio-based polymer materials in cutlery, straws, and takeaway packaging, the country seems to be closer to its goal of using biodegradable polymers for disposable packaging.

The UFS, too, is aiming to phase out the use of plastic bottles in the next three to five years. This will be done by installing filtered water machines in all its buildings.

“We are now left with policymakers to enforce strict laws governing production; and retail industries to use biopolymers or biodegradable polymers in disposable packaging materials,” she says.

New research

Dr Mofokeng and her group’s research is in line with the United Nations’ Sustainable Development Goals (SDGs), including ensuring good health and wellbeing (SDG3), providing clean water and sanitation (SDG6), forging sustainable cities and communities (SDG11), establishing sustainable consumption and production patterns (SDG12), and protecting life below water (SDG14).

She has been researching polymers for almost two decades, and remains passionate about her research field and educating communities. Her new research project, in collaboration with colleagues from her department, targets the removal of heavy metals and other contaminants from groundwater. Testing and water treatment is set to take place in different regions in Qwaqwa, specifically among households that collect drinking and cooking water from boreholes.

Dr Mofokeng’s research group was established in 2016 with one honours and two master’s students. She has since supervised nine honours, seven master’s and one PhD student.

She also recently established international research collaborations with the Libyan Advanced Center for Chemical Analysis and the Faculty of Technology at the University of Banja Luka in Serbia.

News Archive

Reclassification of giraffe status pivotal in public action, says UFS researcher
2016-12-08

Description: Reclassification of giraffe status  Tags: Reclassification of giraffe status  

Dr Francois Deacon, specialised researcher
in the Department of Animal, Wildlife, and
Grassland Sciences at the University of the Free State.
Photo: Supplied

Great news for those who care about the conservation of giraffes is today’s (8 December 2016) announcement by the International Union for the Conservation of Nature (IUCN) that giraffes are now classified as ‘Vulnerable’. The species, formerly classified as ‘Least Concern’ on the IUCN Red List — an index on the likelihood of extinction of animals worldwide — is threatened with extinction.

“Until recently, few people were aware of the situation facing giraffes. It is time to show the world giraffe numbers are in danger. This reclassification by the IUCN is pivotal to get the public to stand up and take action for giraffes,” said Dr Francois Deacon, specialised researcher in the Department of Animal, Wildlife, and Grassland Sciences at the University of the Free State (UFS).

Research is essential to develop effective conservation plans for a species

Key to this announcement was the status report submitted by Dr Deacon. He was the lead author responsible for the submission of the Southern African Giraffe subspecies (Giraffa camelopardalis giraffa) status report that was part of the larger species report submitted for review by the (IUCN). The UFS has been doing many research projects in the past couple of years on giraffe-related issues and topics to address this problem.

The UFS is one of only a few universities in Africa that is committed to studying giraffes to ensure the conservation of this species for generations to come.

“The reclassification of giraffes to ‘Vulnerable’
status, by the IUCN, is pivotal to get the public
to stand up and take action for giraffes.”

A 40% decline in the giraffe population over the past two decades is proof that the longnecks are officially in trouble. According to Dr Deacon, this rate of decline is faster than that of the elephant or rhino. The main reasons for the devastating decline are habitat loss, civil unrest and illegal hunting.

Dr Deacon, pioneer in the use of GPS technology to study giraffes and their natural habitat, said “This vulnerability clearly stipulates we are quickly losing grip on our last few natural populations”. He and a team of researchers at the UFS in South Africa are leading various research and conservation projects to help save the last remaining giraffes in Africa.

Giraffes moved from ‘least concern’ to ‘vulnerable’ on the Red List

The IUCN, a health check for our planet, is the highest level at which decision-makers can prove how many species (fauna or flora) are surviving or not. The update from ‘Least Concern’ to ‘Vulnerable’ on the Red List was released at the 13th Conference of the Parties to the Convention on Biological Diversity in Cancun, Mexico.

A wildlife documentary, Last of the Longnecks clearly shows how the number of giraffes has plummeted in the past two decades from 154 000 to fewer than 98 000 today — with numbers of some giraffes, such as Kenya’s reticulated giraffe, declining by as much as 80%.  

Any individual or institution that wants to make a contribution relating to giraffe research can contact Dr Deacon at the UFS on deaconf@ufs.ac.za.

 

In other media:

Announcement on BBC news: http://www.bbc.co.uk/news/science-environment-38240760
Time: http://time.com/3622344/giraffe-extinction/
The Telegraph: http://www.telegraph.co.uk/science/2016/12/08/giraffes-now-facing-extinction-warn-conservationists/
ABC News: http://abcnews.go.com/International/giraffes-danger-extinction-numbers-dropped/story?id=27334959
theguardian: https://www.theguardian.com/environment/2016/dec/08/giraffe-red-list-vulnerable-species-extinction
Aol: http://www.aol.co.uk/news/2016/12/07/giraffes-in-danger-of-extinction-as-population-plunges-by-up-to/  

 

Former articles:

18 November 2016: Studies to reveal correlation between terrain, energy use, and giraffe locomotion
23 August 2016:
Research on locomotion of giraffes valuable for conservation of this species
9 March 2016:
Giraffe research broadcast on National Geographic channel
18 September 2015:
Researchers reach out across continents in giraffe research
29 May 2015:
Researchers international leaders in satellite tracking in the wildlife environment

 



We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept