Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 September 2024 | Story André Damons | Photo Supplied
Dr Puseletso Mofokeng
Dr Julia Puseletso Mofokeng, from the UFS’s Department of Chemistry, is doing research into biodegradable polymers for application in disposable product packaging.

A researcher from the University of the Free State (UFS) is contributing to the fight against plastic pollution through her research into biodegradable polymers – large, chain-like molecules – as a more environmentally friendly alternative to petroleum-based plastics.

Plastic pollution is a global environmental problem, with 19 to 23 million tonnes of plastic waste leaked into aquatic ecosystems every year.

Dr Julia Puseletso Mofokeng, Senior Lecturer and Researcher in the UFS Department of Chemistry, hopes her research into how biodegradable polymers can be used in disposable product packaging can influence the industry and policymakers to enforce the use of biopolymers or biodegradable polymers in disposable products. This would help reduce plastic waste and boost environment-conservation efforts.

The United Nations Environment Programme (UNEP) describes plastic waste as a serious environmental problem – humans produce about 400 million tonnes of plastic waste every year. Approximately 36% of all plastics produced are used in packaging, including single-use plastic products for food and beverage containers, approximately 85% of which ends up in landfills or as unregulated waste.

Researching biodegradable polymers

Dr Mofokeng’s desire to solve the waste problem in her community of Bophelong village in Qwaqwa, Free State – where community members dumped and burned all sorts of waste, including plastics – inspired her towards her field of research.

Today, her research is aimed at managing plastic waste to combat environmental and atmospheric pollution (from incineration), conserve energy, and improve water quality, including ensuring safe drinking water.

High levels of plastic waste have led to increased research into and development of biodegradable polymers as an alternative to non-biodegradable materials for short-shelf-life goods (such as packaging for fresh fruit and vegetables).

Biopolymers or biodegradable polymers, explains Dr Mofokeng, are derived from renewable resources including, but not limited to, vegetable oils, starches and animal fats. They can therefore be easily disposed of after use without harming the environment.

“My research is based on the preparation and characterisation of completely biodegradable polymers, their blends, and composites or nanocomposites filled with unmodified or modified inorganic fillers, natural fibres, as well as synthesised carbonaceous materials,” she says.

Such materials are developed for various applications, including packaging, electromagnetic interference shielding (blocking unwanted signals), and the removal of heavy metals and other contaminants from water bodies. 

“To achieve these aims, I and my small research group are preparing completely biodegradable polymer blends.”

This involves adjusting their morphology (structure) and some of their properties (thermal, thermomechanical, mechanical, and flame retardancy) to match those of petroleum-based polymers in their replacement for disposable products; by reinforcing with natural fibres, and minerals.

Biodegradable polymers can degrade within a few days to a few years depending on their source, type, and biodegradation method used, while petroleum-based polymers can exist for hundreds to thousands of years without degrading. Moreover, because biodegradable polymers are produced from natural resources, their biodegradation mainly produces carbon dioxide, water, and other non-toxic byproducts, Dr Mofokeng adds.

“Biodegradable polymers can degrade by themselves under natural environmental conditions – in one to three years – or may require human intervention to degrade where composts are prepared or conditions are controlled in order to degrade the polymers. The latter two being the fastest, where it could take days to months. In my previous research project [we] kept polylactic acid filled with short sisal fibre in plain water at 80℃, and all the tested samples degraded within 10 days.”

She and a PhD student are conducting an ongoing experiment involving three different biodegradable polymer systems exposed to different conditions outside and under soil, measuring the rate of biodegradation by mimicking the environmental conditions found in dumping sites and landfills.

Signs of biodegradation on the samples showed clearly after 14 months, with cracks, surface erosion, and a decrease in the initial weighed mass, suggesting that the polymers could be completely degraded within two to three years.

Closer to goal

Dr Mofokeng, who has been a National Research Foundation (NRF) Y2-rated researcher since 2021, says since most food outlets and restaurants in South Africa have already started using paper- and bio-based polymer materials in cutlery, straws, and takeaway packaging, the country seems to be closer to its goal of using biodegradable polymers for disposable packaging.

The UFS, too, is aiming to phase out the use of plastic bottles in the next three to five years. This will be done by installing filtered water machines in all its buildings.

“We are now left with policymakers to enforce strict laws governing production; and retail industries to use biopolymers or biodegradable polymers in disposable packaging materials,” she says.

New research

Dr Mofokeng and her group’s research is in line with the United Nations’ Sustainable Development Goals (SDGs), including ensuring good health and wellbeing (SDG3), providing clean water and sanitation (SDG6), forging sustainable cities and communities (SDG11), establishing sustainable consumption and production patterns (SDG12), and protecting life below water (SDG14).

She has been researching polymers for almost two decades, and remains passionate about her research field and educating communities. Her new research project, in collaboration with colleagues from her department, targets the removal of heavy metals and other contaminants from groundwater. Testing and water treatment is set to take place in different regions in Qwaqwa, specifically among households that collect drinking and cooking water from boreholes.

Dr Mofokeng’s research group was established in 2016 with one honours and two master’s students. She has since supervised nine honours, seven master’s and one PhD student.

She also recently established international research collaborations with the Libyan Advanced Center for Chemical Analysis and the Faculty of Technology at the University of Banja Luka in Serbia.

News Archive

UFS takes steps to address power shedding
2008-01-31

The problem of power shedding was urgently discussed by the Executive Committee of the Executive Management (Exco) during its meeting yesterday.

A report was presented by Ms Edma Pelzer, Director: Physical Resources and Special Projects, and a consulting electrical engineer about possible short, medium and long term solutions for the UFS.

This includes (a) the possible installation of equipment (eg. power generators) and (b) operating procedures to ensure the UFS’s functionality despite power shedding.

We are also in contact with Centlec to bring about the best possible arrangements for the UFS regarding the power shedding. It is possible that refined power shedding schedules will be implemented within a few weeks or a month to ensure that there is minimal disruptions at the UFS (especially during evening lectures).

In the long term it is unaffordable to generate power for the whole campus to meet everyone’s electricity needs. Only critical points will be supplied with emergency power generators.

Emergency power generation for certain critical points have already been provided for (eg. the Callie Human Centre, the evacuation of large halls, computer services, critical long term research projects, etc.). We have been doing surveys since 2006 to determine the UFS’s preparedness for “normal” power failures. The extent of the current situation has, however, taken the whole country by surprise.

Certain urgent steps were decided on yesterday. A decision was made to immediately design emergency power systems and supply it to the new examination centre and large lecture halls such as the Stabilis, Flippie Groenewoud, Agriculture building, and possibly the West Block. The delivery and installation of these systems will, however, take from three to six months.

The UFS will have to manage despite the power shedding, even after the emergency power systems have been installed and we will not be able to function as normal. Every division must devise operating procedures to deal with the power shedding without jeopardising the quality of core functions.

Bloemfontein is luckier than many other cities because Centlec is able (so far) to keep to the published schedule to a large extent.

Plans are also being made to keep staff and students continuously informed via the UFS web site about expected power shedding schedules and risks of power shedding in the course of a day.

Exco requests every faculty and support service to think about suitable operational solutions for managing their work and meetings during a power shedding.

Every line head has instructions to urgently determine the situation and needs in his or her division and indicate what practical arrangements can and must be made to schedule work around the power shedding. Every line head must provide Exco with a status report within a week.

In this way critical areas in terms of core functions and high quality service delivery will be determined and receive attention. Security systems and the safety of staff and students will also receive specific attention - this includes the residences.

In the mean time the Department of Physical Resources will carry on with a wide-ranging investigation into the extent of needs and plans and will compile a budget for the solution thereof.

Prof. Teuns Verschoor, Vice-Rector: Academic Operations, and the deans had a meeting yesterday to discuss problems and possible solutions around the power shedding in eg. computer rooms, during evening lectures, and practical classes.

Options may include eg. alternative time slots (eg. weekends) or alternative halls (eg. at the Vista Campus) for evening lectures which are affected by power shedding, or adjusted teaching methods.

Staff is requested not to install their own power generators under any circumstances. It can be very dangerous when such apparatus are linked to a building’s electrical system. The safety of staff and students and the risks of fire or injuries must also be the highest priority under all circumstances.

The Department of Physical Resources is also in the process of investigating options such as smaller power generators or ‘UPS’ apparatus as part of a broader evaluation of needs and potential solutions.

Exco wants to ensure all staff and students that this matter is receiving urgent attention and will keep on receiving it.

If there are any practical solutions about dealing with the power shedding (such as alternative ways of working) you are invited to send an e-mail to: lightsout@ufs.ac.za  

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept