Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 August 2024 | Story André Damons | Photo Supplied
Thandokuhle Gama, Dr Glen Tylor and Anele Mthembu
Winners: Thandokuhle Gama (left) and Anele Mthembu (right), who were honoured with the DSI-Esther Mahlangu Master's Fellowship at the 2024 SAWiSA, with Dr Glen Taylor, Senior Director: Directorate Research Development (DRD), UFS.

Two postgraduate students from the University of the Free State (UFS) were honoured at this year’s Women in Science Awards (SAWiSA) hosted by the Department of Science and Innovation (DSI).

Thandokuhle Gama, a Master of Medical Science student with specialisation in Pharmacology, and Anele Mthembu, who is working on her master’s degree in Disaster Management in the Disaster Management Training and Education Centre for Africa (DIMTEC), are both recipients of the DSI-Esther Mahlangu Master's Fellowships.

This fellowship is awarded to women scientists and researchers who are pursuing their master’s or doctoral studies and already hold scholarships from the National Research Foundation or other DSI agencies. The fellowships for Gama and Mthembu are worth R75 000 each and can be used towards their tuition fees or to enhance academic programmes by covering the costs of attending conferences or specialised research materials and equipment required to complete their degrees.

Honouring Dr Esther Mahlangu

The prestigious 2024 SAWiSA, which honour the exceptional contributions of women to science, technology, engineering, mathematics and innovation (STEMI) in South Africa, took place on 15 August 2024 in Mbombela. The theme was “Transition towards an Innovation Economy: The Role of Women Leaders in STEM”.

This year, the awards honoured world-renowned artist, Dr Esther Mahlangu, by renaming this year's master's and doctoral fellowships the DSI-Esther Mahlangu Fellowships.

“I feel honoured and grateful for the recognition, although it's been difficult to process what it actually means. It has been an overwhelming experience. It came as a surprise, because when I applied, I was not sure what to expect because these are national awards with many other applicants,” says Gama.

She was nominated by Innocensia Mangoato, lecturer in the UFS Department of Pharmacology and a previous winner at the awards. Gama is doing research on medicinal plants that are used in traditional medicine to treat diabetes.

“Winning this award means that my work thus far is being recognised. It is all through God’s grace. I'm also grateful to everyone who has contributed towards my journey: my family, teachers, mentors and sponsors, and everyone else. It will allow me to continue to advance research in the field of diabetes treatment using traditional medicines or medicinal plants.”

Bettering lives

Mthembu, who was nominated by her mentor, Dr Tlou Daisy Raphela-Masuku, a lecturer at DIMTEC, says it is a fantastic feeling winning this award. “Before the awards, Dr Raphela-Masuku and I dreamt I could win the SAWiSA. But before then, I was surprised and grateful for being acknowledged by DSI as a finalist; I focused on being a DSI finalist, and that winning would be a bonus,” she says.

She continues: “It means a lot to me to win the DSI Master’s Fellowship, as it is a testimony of God’s grace in my life. It is the destiny for helpers God has placed in my life, including my mentor, supervisor, and the DIMTEC postgraduate school. We all won!”

Mthembu is working her master’s thesis on the integration of risk-informed development (RID) and nature-based solutions (NbS) into sustainable human settlements in eThekwini Municipality, KwaZulu-Natal.

“The overarching aim is to evaluate the integration of both these concepts into human settlements’ strategic planning to offer eThekwini Municipality innovative and ecosystem-based approaches to achieving sustainable and resilient human settlements and achieving Sustainable Development Goal (SDG) 11 on building resilient cities.

“I hope to publish my findings and contextualise the enabling environments for RID (EE4RID) Framework in eThekwini Municipality so they can make risk-informed decisions on development and human settlements to achieve SDG 11,” explains Mthembu.

Gama says the aim with her research is to determine if these medicinal plants can treat diabetes by stimulating stem cells to differentiate and become insulin-producing cells. She hopes that through this research diabetes treatment can advance from a level where it is being continuously managed, to a level where we can cure the disease.

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept