Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 December 2024 | Story André Damons | Photo André Damons
Breast Cancer Research 2024
The research team consist of Dr Beynon Abrahams (left), Viwe Fokazi, MMed.Sci student, and PhD student Songezo Vazi.

In an effort to better understand chemotherapeutic treatment response in triple negative breast cancer (TNBC) – known as an aggressive cancer with high recurrence and high mortality rate in breast cancer patients – researchers from the University of the Free State (UFS) developed a drug-resistant TNBC spheroid model that is physiologically more accurate in displaying the complexities involved in drug-resistance development.

Dr Beynon Abrahams, Lecturer in the Department of Basic Medical Sciences within the UFS Faculty of Health Sciences, says breast cancer remains the most frequently diagnosed cancer in women. It is also the most debilitating type of cancer responsible for the highest cancer mortality rates in women. Though various subtypes of breast cancer exist, TNBC is one that is of particular interest to his research team.

“TNBC is one of the most difficult cancer types to treat, due to lack of treatment targets. This often leads to treatment failure in TNBC patients, with drug resistance being a common occurrence, contributing to high death rates. TNBC is classified based on its lack of expression of common receptors such as the estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2, which are commonly expressed in other cancer subtypes.

“Characteristically, TNBC is known as an aggressive cancer with high metastatic potential (spreading of cancer), resulting in a poor prognosis for these patients. The current prescribed therapies for TNBC, entails multidrug combination systemic therapy including chemotherapeutic agents such as doxorubicin and cisplatin as adjuvant therapy. However, despite these therapeutic interventions, drug resistance is a common occurrence,” says Dr Abrahams.

The best available preclinical cell-based models should be used

For effective drug treatments to be developed for TNBC therapeutics, he continues, the best available disease models should be used to not only improve our understanding of the disease physiology and its numerous mechanisms involved in chemotherapeutic resistance development but also to provide accurate results when determining how safe and effective newly developed drugs are, before they may be considered for further development and testing on humans.

According to him, in preclinical cancer research the conventional methods employed to study disease mechanisms, drug action and drug resistance is ineffective. Firstly, the traditionally used preclinical 2-dimensional (2-D) cell culture models do not accurately recapitulate the architectural biology observed in vivo, second, the drug responses assessed in these models may provide inaccurate results and limit its translational potential, explains Dr Abrahams. Thus, more advanced cell-based models such as 3-dimensional (3-D) spheroids and organoids to name a few, should be considered as alternatives.

The UFS research team, in collaboration with the Centre of Excellence for Pharmaceutical Sciences (Pharmacen™) at the North-West University (NWU), recently took the undertaking to establish two triple negative breast cancer 3-D spheroid models, using the clinostat rotating bioreactor ClinoStar™ system, designed by CelVivo in Denmark. The project is funded by the National Research Foundation.

The ClinoStar™ system promotes the self-aggregation of single cells, and natural formation of 3-D spheroids, through slow rotation within a cell growth chamber known as an incubator. There are various techniques and methods available to develop spheroids and organoids, however the ClinoStar™ systems allow for the development of metabolically stable spheroids, over a longer period of time, as opposed to other methods. It also eliminates the sheer-stress conditions that are normally encountered when using 2-D cell culture models.

“We successfully established one chemotherapeutic-sensitive triple negative breast cancer spheroid model and one novel cisplatin-resistant triple negative breast cancer spheroid model. The chemo-sensitive TNBC spheroid model was evaluated for responsiveness against two clinically used chemotherapeutic agents, doxorubicin and cisplatin. We suggest that this model may be useful to screen novel compounds including traditionally used phytomedicinal material for anticancer activity.

“In our second model, the cisplatin-resistant TNBC spheroid model was also exposed to cisplatin and doxorubicin and demonstrated a resistant response in terms of growth and viability. We believe that this model may be useful to further explore drug resistance mechanisms and may also be used as a tool to assess the drug reversal potential of novel compounds. The value and impact of these models lies in that they may offer predictive drug responses that are closer to that observed in in vivo (animals), as opposed to 2-D cell cultures. This however needs to be assessed. We are currently in the process to fully characterise these spheroids models.”

Aim of the research

Dr Abrahams explains their research aims to merge the gap between conventionally used 2-D cell models and in vivo models, by providing a model that is physiologically more accurate in mimicking the in vivo conditions and complex pathways associated with drug resistance, which is otherwise not observed or accurately expressed in 2D models. “Although our research is preclinical and considered fundamental basic research, the translational potential of our spheroid models may provide options for exploring and testing alternative drugs that may be considered for translational research,” Dr Abrahams says.

Characterising other advanced cell-based cancer models

The team is currently in the process of further characterising the TNBC spheroid model based on protein and genetic expression profiles to elucidate potential therapeutic biomarkers for drug treatment as well as screening various phytomedicinal plants, to assess their antiproliferative and drug-resistance reversal potential. In addition, the researchers recently commenced a new research project that aims to develop a drug-resistant prostate cancer spheroid model using the Clinostar™ system with their collaborators at the NWU.

Advanced cell-based model research is still relatively ‘new’ in South Africa and Africa, compared to the global North. As a result, says Dr Abrahams, their NWU collaborators together with other stakeholders, initiated the establishment of the Society for Advanced Cell Culture Modelling for Africa (SACCMA) in 2021, which aims to develop the fields of advanced cell modelling, three-dimensional (3D) cell cultures, 3D bioprinting and stem cell research, in Africa. Our current inter-departmental  collaboration include researchers from the Pharmacology department, but we hope to build and expand our collaboration network in the near future.

News Archive

Multidisciplinary conference on TB control
2003-09-22

Theme: Tuberculosis control: a multidisciplinary approach to research, policy and practice Venue: CR Swart Auditorium, University of the Free State Campus, Bloemfontein Date: 11 and 12 November 2003 Time: 11 November, 19:00-20:30 AND 12 November 08:30-17:00

Tuesday, 11 November - 19:00-20:30 (registration from 18:30) and Wednesday, 12 November - 08:30-17:00 (registration from 07:30)

The Honourable MEC for Health in the Free State will officially open the Conference on the evening of 11 November, while Prof Frederick Fourie (Vice-Chancellor and Rector of the University of the Free State) will attend to the welcoming. In addition, Prof Françoise Portaels (Institute of Tropical Medicine, Belgium) and Dr Refiloe Matji (National Department of Health, South Africa) will respectively present a global and a South African perspective on TB. The majority of the presentations will follow on 12 November.

Main thrust of Conference

The main thrust of the Conference is to disseminate both research results and policy/managerial matters relevant to TB and TB control, and to facilitate discourse among researchers and health policy makers/managers/practitioners in the field of TB control. Presenters of papers, as well as delegates are, therefore, drawn from both academic/research institutions, and from health service sectors involved in TB control in all provinces and in neighbouring countries.

Topics of presentations

A variety of topics will be dealt with during presentations, such as: New challenges in the global control of MDR-TB New strategies and policies on MDR-TB in South Africa A South African perspective on TB control A provincial perspective on implementing the national TB control policy

The role of the public district hospital in TB control Tuberculosis control through DOTS Case detection strategies

TB in children Hospital to clinic: is this the missing link? Patient compliance with DOT for TB Challenges for effective health communications in a multicultural context

The economics of TB Frequency of multiple infections with M. tuberculosis in pulmonary TB patients HIV/AIDS and TB, etc.

Speakers

Among the speakers will be Dr Victor Litlhakanyane (Head of Health: Free State); Prof Françoise Portaels and Dr Leen Rigouts (Institute of Tropical Medicine, Belgium); Dr Reliloe Matji (Director: NTBC Programme); Ntsiki Jolingana (Director: HIV, AIDS, TB and Communicable Diseases, Free State) and Annatjie Peters (Free State TB Coordinator); Dr Karin Weyer (Medical Research Council); Profs Herman Meulemans, Diana De Graeve, Luc Pauwels and Christiane Timmerman (University of Anwerp, Belgium); Dr Lara Fairall (UCT Lung Institute, University of Cape Town); Prof Frikkie Booysen (Department of Economics, University of the Free State); Christo Heunis, Ega Janse van Rensburg-Bonthuyzen, Zacheus Matebesi and Kobus Meyer (CHSR&D); Dr Mary Ednington (School of Public Health, Wits); Dr Carmen Báez and Sabine Verkuijl (ISDS); Anneke Van der Spoel-Van Dijk (Medical Microbiology, University of the Free State).

Costs

There will be no registration fees. However, delegates are expected to arrange their own transport and accommodation, or arrange for sponsorships themselves.

Contact details in case of inquiries and confirmation:

Postal Address: The Director, CHSR&D, PO Box 339, University of the Free State, Bloemfontein, 9300 Fax: 051 448 0370 Tel: 051 401 2181 OR 051 401 3256 E-mail: vrensh@mail.ufs.ac.za (Dingie van Rensburg) OR neljc@mail.ufs.ac.za (Ohna Nel)

PLEASE, CONFIRM YOUR ATTENDANCE AS SOON AS POSSIBLE, BUT AT THE LATEST BEFORE 25 OCTOBER 2003 ? BY TELEPHONE, FAX OR E-MAIL.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept