Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 December 2024 | Story André Damons | Photo André Damons
Breast Cancer Research 2024
The research team consist of Dr Beynon Abrahams (left), Viwe Fokazi, MMed.Sci student, and PhD student Songezo Vazi.

In an effort to better understand chemotherapeutic treatment response in triple negative breast cancer (TNBC) – known as an aggressive cancer with high recurrence and high mortality rate in breast cancer patients – researchers from the University of the Free State (UFS) developed a drug-resistant TNBC spheroid model that is physiologically more accurate in displaying the complexities involved in drug-resistance development.

Dr Beynon Abrahams, Lecturer in the Department of Basic Medical Sciences within the UFS Faculty of Health Sciences, says breast cancer remains the most frequently diagnosed cancer in women. It is also the most debilitating type of cancer responsible for the highest cancer mortality rates in women. Though various subtypes of breast cancer exist, TNBC is one that is of particular interest to his research team.

“TNBC is one of the most difficult cancer types to treat, due to lack of treatment targets. This often leads to treatment failure in TNBC patients, with drug resistance being a common occurrence, contributing to high death rates. TNBC is classified based on its lack of expression of common receptors such as the estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2, which are commonly expressed in other cancer subtypes.

“Characteristically, TNBC is known as an aggressive cancer with high metastatic potential (spreading of cancer), resulting in a poor prognosis for these patients. The current prescribed therapies for TNBC, entails multidrug combination systemic therapy including chemotherapeutic agents such as doxorubicin and cisplatin as adjuvant therapy. However, despite these therapeutic interventions, drug resistance is a common occurrence,” says Dr Abrahams.

The best available preclinical cell-based models should be used

For effective drug treatments to be developed for TNBC therapeutics, he continues, the best available disease models should be used to not only improve our understanding of the disease physiology and its numerous mechanisms involved in chemotherapeutic resistance development but also to provide accurate results when determining how safe and effective newly developed drugs are, before they may be considered for further development and testing on humans.

According to him, in preclinical cancer research the conventional methods employed to study disease mechanisms, drug action and drug resistance is ineffective. Firstly, the traditionally used preclinical 2-dimensional (2-D) cell culture models do not accurately recapitulate the architectural biology observed in vivo, second, the drug responses assessed in these models may provide inaccurate results and limit its translational potential, explains Dr Abrahams. Thus, more advanced cell-based models such as 3-dimensional (3-D) spheroids and organoids to name a few, should be considered as alternatives.

The UFS research team, in collaboration with the Centre of Excellence for Pharmaceutical Sciences (Pharmacen™) at the North-West University (NWU), recently took the undertaking to establish two triple negative breast cancer 3-D spheroid models, using the clinostat rotating bioreactor ClinoStar™ system, designed by CelVivo in Denmark. The project is funded by the National Research Foundation.

The ClinoStar™ system promotes the self-aggregation of single cells, and natural formation of 3-D spheroids, through slow rotation within a cell growth chamber known as an incubator. There are various techniques and methods available to develop spheroids and organoids, however the ClinoStar™ systems allow for the development of metabolically stable spheroids, over a longer period of time, as opposed to other methods. It also eliminates the sheer-stress conditions that are normally encountered when using 2-D cell culture models.

“We successfully established one chemotherapeutic-sensitive triple negative breast cancer spheroid model and one novel cisplatin-resistant triple negative breast cancer spheroid model. The chemo-sensitive TNBC spheroid model was evaluated for responsiveness against two clinically used chemotherapeutic agents, doxorubicin and cisplatin. We suggest that this model may be useful to screen novel compounds including traditionally used phytomedicinal material for anticancer activity.

“In our second model, the cisplatin-resistant TNBC spheroid model was also exposed to cisplatin and doxorubicin and demonstrated a resistant response in terms of growth and viability. We believe that this model may be useful to further explore drug resistance mechanisms and may also be used as a tool to assess the drug reversal potential of novel compounds. The value and impact of these models lies in that they may offer predictive drug responses that are closer to that observed in in vivo (animals), as opposed to 2-D cell cultures. This however needs to be assessed. We are currently in the process to fully characterise these spheroids models.”

Aim of the research

Dr Abrahams explains their research aims to merge the gap between conventionally used 2-D cell models and in vivo models, by providing a model that is physiologically more accurate in mimicking the in vivo conditions and complex pathways associated with drug resistance, which is otherwise not observed or accurately expressed in 2D models. “Although our research is preclinical and considered fundamental basic research, the translational potential of our spheroid models may provide options for exploring and testing alternative drugs that may be considered for translational research,” Dr Abrahams says.

Characterising other advanced cell-based cancer models

The team is currently in the process of further characterising the TNBC spheroid model based on protein and genetic expression profiles to elucidate potential therapeutic biomarkers for drug treatment as well as screening various phytomedicinal plants, to assess their antiproliferative and drug-resistance reversal potential. In addition, the researchers recently commenced a new research project that aims to develop a drug-resistant prostate cancer spheroid model using the Clinostar™ system with their collaborators at the NWU.

Advanced cell-based model research is still relatively ‘new’ in South Africa and Africa, compared to the global North. As a result, says Dr Abrahams, their NWU collaborators together with other stakeholders, initiated the establishment of the Society for Advanced Cell Culture Modelling for Africa (SACCMA) in 2021, which aims to develop the fields of advanced cell modelling, three-dimensional (3D) cell cultures, 3D bioprinting and stem cell research, in Africa. Our current inter-departmental  collaboration include researchers from the Pharmacology department, but we hope to build and expand our collaboration network in the near future.

News Archive

DF Malherbe Memorial Lecture
2005-05-19

DF Malherbe Memorial Lecture: Language and language activism in a time of transformation (summary)
Proff Hennie van Coller and Jaap Steyn

Language activism necessary for multilingualism
The awareness is growing that language activism will be needed to bring about a truly democratic multi-lingual society. What is quite clear is that a firm resolve must continuously resist the concentrated pressure on Afrikaans-medium schools (and universities) to allow themselves to be anglicised through becoming first parallel medium, then dual medium, and finally English medium institutions.

Proff Hennie van Coller and Jaap Steyn said this last night (Wednesday night) in the 24th DF Malherbe Memorial Lecture at the University of the Free State. Prof van Coller is head of the Department Afrikaans, Dutch, German and French at the UFS. Both are widely honoured for their contributions to Afrikaans and the promotion of Afrikaans.

They discussed three periods of transformation since 1902, and said about the current phase, which started in 1994:  “Besides all institutions and councils having to be representative of South Africa’s racial composition, places of education were required to open their doors. Quite rapidly this policy has had the result that schools and universities may be solely English medium, but not solely Afrikaans medium. Afrikaans medium institutions — if they claim the right to remain Afrikaans — are quickly branded racist, even though their student body may include all races.

“Education departments are presently exerting great pressure on Afrikaans medium schools to become double or parallel medium schools.  Parallel medium education is an equitable solution provided it can be sustained. Established parallel medium schools, such as Grey College in Bloemfontein, have catered even-handedly for English and Afrikaans speakers for decades. But the situation is different in the parallel medium (and still worse in the double medium) schools that spring up usually at the behest of a department of education.

“Afrikaans schools are converted almost over-night into parallel or dual medium schools without any additional personnel being provided. Depending on the social environment, a parallel medium school becomes reconstituted as a dual medium school on average in five to eight years, and dual medium school becomes an English-only school in two to three years. Some Afrikaans medium schools have become English medium in just three years.

“Though the Constitution recognises mono-lingual schools, officials in the provinces insist that Afrikaans schools become dual or parallel medium; English medium schools are left undisturbed. One must conclude that the tacit aim of the state is English as the sole official language, despite the lip-service paid to multi-lingualism, and the optimistic references to post-apartheid South Africa as a ‘rainbow’ nation.”

They said a recent study has shown that the 1 396 Afrikaans schools in the six provinces in 1993 have dwindled to 844. The fall off in the Free State is from 153 to 97; in the Western Cape from 759 to 564; in Gauteng from 274 to 155; in Mapumalanga from 90 to 3; in the North West from 82 to 13; and in Limpopo Province from 38 to 12.

They said the changes at universities, too, have been severe, as university staffs well know. Ten years ago there were five Afrikaans universities. Today there are none. The government demanded that all universities be open to all, which has meant that all universities have had to become English medium. And no additional funding was forthcoming for the changes. The government policy amounts to a language “tax” imposed on the Afrikaans community for using Afrikaans.

“Only when all schools (and universities) are English will the clamor cease. Academics and educationists are beginning to speak openly of forming pressure groups to save Afrikaans schools, and of using litigation as one of their methods. 59% of Afrikaans parents have said they would support strong action if Afrikaans were no longer a medium of instruction at schools.”

 

 


 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept