Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 December 2024 | Story Edzani Nephalela | Photo Supplied
Stefanus Scheepers
The recently dual-capped Stefanus Scheepers, Senior Admin Assistant Officer in the UFS Faculty of Education, says his success lies in mastering the art of balance.

Completing a master’s degree in record time is a remarkable achievement, but for Stefanus Scheepers, Senior Admin Assistant Officer at the University of the Free State Faculty of Education, it marked the beginning of an even more extraordinary academic journey. In a feat few could match, he earned two master’s degrees in just 20 months.

Scheepers’ first degree, a Master of Education specialising in Higher Education Studies, was conferred by the University of the Free State (UFS) on 9 December 2024. His thesis, ‘Effective Pedagogical Practices Teaching Assistants Use in Hybrid Teaching Modes: A Community of Inquiry Approach’, explored innovative teaching strategies in hybrid learning environments.

The second degree, a Master of Science by Research in Sustainable African Futures, was conferred through the Wits-Edinburgh Sustainable African Futures (WESAF) Doctoral Programme. His thesis, ‘Investigating the Perception, Adoption, and Utilization of Generative Artificial Intelligence in South African Higher Education Institutions’, examined the impact of generative artificial intelligence (GAI) on sustainable education in South Africa.

“My experience presenting workshops on GAI tools and its misuse by students sparked my research interest,” he explained. The resulting mini-dissertation shed light on the critical need for sustainable education practices in an era increasingly influenced by AI. This theme will continue as Scheepers embarks on a PhD at Wits University in 2025, exploring how to balance GAI’s benefits and risks in education.

Initially, Scheepers embarked on a part-time master’s degree in 2023 at the UFS while working full-time. “I hadn’t planned to complete two degrees,” he said, “but my supervisor’s encouragement and excellent guidance made completing the degree within a year seem possible.” Midway through, however, a nomination from the Dean and Vice-Dean of the Faculty of Education changed everything. The WESAF Doctoral Programme offered an opportunity that was too valuable to pass up, even though it added another degree to his demanding schedule.

“At first I was very hesitant, but my supervisor said that I would regret not taking it”, he said with a smile.

Time management does the trick

Balancing the demands of studying for two master’s degrees was no small feat. Scheepers chose to embrace meticulous time management, creating a schedule that integrated study and rest.

“Time management is not just about making a plan but sticking to it,” he emphasised. This structured approach allowed him to maximise productivity without burnout. “I must admit, working at night in your office did feel strange at first, but tranquil after a while.” Weekends included much-needed downtime, which helped him maintain resilience throughout.

Reflecting on this intense period, Scheepers attributes his success to cumulative skills gained over the years. “Every skill learnt in prior degrees was put to the test. The journey wasn’t easy, but intentionally applying these skills made the challenge rewarding.”

After nearly six years at higher education institutions – Scheepers’ career ambition is to transition into a lecturer role, with the hope of passing on his research and hands-on experience to a new generation of students.

When asked what he would share with prospective students at the UFS, Scheepers said, “The path to success isn’t always straightforward. I’ve experienced setbacks, even dropping out twice before finding my footing. But each challenge taught me resilience and determination. To all students: Keep going, even when the journey feels daunting. Every obstacle you overcome is a step closer to your goals. Remember, success is not about avoiding failure but learning and growing stronger with each experience. Stay focused, believe in yourself, and trust the process – you can do much more than you may realise.”

This remarkable dual graduation is not only a rare achievement in academia but also highlights Scheepers’ exceptional time management, strategic planning, and unwavering commitment to advancing the fields of education and sustainable futures.

News Archive

Mathematical methods used to detect and classify breast cancer masses
2016-08-10

Description: Breast lesions Tags: Breast lesions

Examples of Acho’s breast mass
segmentation identification

Breast cancer is the leading cause of female mortality in developing countries. According to the World Health Organization (WHO), the low survival rates in developing countries are mainly due to the lack of early detection and adequate diagnosis programs.

Seeing the picture more clearly

Susan Acho from the University of the Free State’s Department of Medical Physics, breast cancer research focuses on using mathematical methods to delineate and classify breast masses. Advancements in medical research have led to remarkable progress in breast cancer detection, however, according to Acho, the methods of diagnosis currently available commercially, lack a detailed finesse in accurately identifying the boundaries of breast mass lesions.

Inspiration drawn from pioneer

Drawing inspiration from the Mammography Computer Aided Diagnosis Development and Implementation (CAADI) project, which was the brainchild Prof William Rae, Head of the department of Medical Physics, Acho’s MMedSc thesis titled ‘Segmentation and Quantitative Characterisation of Breast Masses Imaged using Digital Mammography’ investigates classical segmentation algorithms, texture features and classification of breast masses in mammography. It is a rare research topic in South Africa.

 Characterisation of breast masses, involves delineating and analysing the breast mass region on a mammogram in order to determine its shape, margin and texture composition. Computer-aided diagnosis (CAD) program detects the outline of the mass lesion, and uses this information together with its texture features to determine the clinical traits of the mass. CAD programs mark suspicious areas for second look or areas on a mammogram that the radiologist might have overlooked. It can act as an independent double reader of a mammogram in institutions where there is a shortage of trained mammogram readers. 

Light at the end of the tunnel

Breast cancer is one of the most common malignancies among females in South Africa. “The challenge is being able to apply these mathematical methods in the medical field to help find solutions to specific medical problems, and that’s what I hope my research will do,” she says.

By using mathematics, physics and digital imaging to understand breast masses on mammograms, her research bridges the gap between these fields to provide algorithms which are applicable in medical image interpretation.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept