Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
13 December 2024 | Story Martinette Brits | Photo Stephen Collett
Dr Francois Jacobs
Dr Francois Jacobs received his Doctor of Philosophy degree in Chemistry on Monday, 9 December.

Dr Francois Jacobs, a 30-year-old PhD graduate, has recently returned from an intensive training workshop in Harwell, Oxford, courtesy of the David Blow Bursary. This prestigious award recognises outstanding African researchers making significant contributions to macromolecular crystallography.

Dr Jacobs earned his Doctor of Philosophy degree in Chemistry on Monday, 9 December. While earning a PhD by the age of 30 was not part of his initial plan, he always aspired to pursue higher education. “From a young age, I had a strong desire to study at university. Once I got there, my ambition shifted towards obtaining a PhD,” he says, reflecting on the journey that led to this remarkable achievement.

Groundbreaking research on cancer and antibiotics

Dr Jacobs’ research addresses some of the most pressing health challenges of our time: cancer and antibiotic resistance. Using crystallography, he investigates the interactions between newly developed anticancer and antibacterial compounds and biological structures such as proteins at the atomic level. This work is vital in combating the growing threat of antibiotic-resistant bacterial infections and advancing cancer treatments.

"For me, it's about seeing humans thrive and reducing the suffering caused by illness," he explains. "I lost my grandmother to cancer, and I hope my work can spare someone else’s loved one from a similar loss."

Prestigious workshop with global experts

The "DLS-CCP4 Data Collection and Structure Solution Workshop," hosted by Diamond Light Source, offered Dr Jacobs an unparalleled opportunity to learn from leading experts in macromolecular crystallography. The workshop covered critical skills such as growing protein and DNA crystals, preventing degradation during data collection, and processing complex data. Participants also gained insights directly from the engineers and scientists behind the facility’s cutting-edge software and synchrotron technology.

“It was an incredible opportunity to learn from some of the brightest minds in the field,” says Dr Jacobs. “Not only did I acquire new skills, but I also forged new collaborations with potential research partners who can help take my work to the next level.”

The David Blow Bursary, which enabled Dr Jacobs to attend this workshop, is awarded to  African researchers conducting impactful macromolecular crystallography studies.

"This training has been transformative," he adds. "It is a fantastic experience for any aspiring researcher, and I’m grateful to have had the chance to learn from these experts. Many researchers who attend workshops like this go on to work at the Diamond Light Source itself. I am eager to see where this training will take me."

A vision for the future

As Dr Jacobs continues his research, he remains driven by the hope that his work will lead to life-saving advancements in healthcare. “I want my research to provide hope and solutions for individuals battling cancer and bacterial infections,” he says.

His achievements exemplify the transformative power of education, research, and collaboration, and his story serves as an inspiration to aspiring researchers across Africa. 

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept