Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
13 December 2024 | Story Martinette Brits | Photo Stephen Collett
Dr Francois Jacobs
Dr Francois Jacobs received his Doctor of Philosophy degree in Chemistry on Monday, 9 December.

Dr Francois Jacobs, a 30-year-old PhD graduate, has recently returned from an intensive training workshop in Harwell, Oxford, courtesy of the David Blow Bursary. This prestigious award recognises outstanding African researchers making significant contributions to macromolecular crystallography.

Dr Jacobs earned his Doctor of Philosophy degree in Chemistry on Monday, 9 December. While earning a PhD by the age of 30 was not part of his initial plan, he always aspired to pursue higher education. “From a young age, I had a strong desire to study at university. Once I got there, my ambition shifted towards obtaining a PhD,” he says, reflecting on the journey that led to this remarkable achievement.

Groundbreaking research on cancer and antibiotics

Dr Jacobs’ research addresses some of the most pressing health challenges of our time: cancer and antibiotic resistance. Using crystallography, he investigates the interactions between newly developed anticancer and antibacterial compounds and biological structures such as proteins at the atomic level. This work is vital in combating the growing threat of antibiotic-resistant bacterial infections and advancing cancer treatments.

"For me, it's about seeing humans thrive and reducing the suffering caused by illness," he explains. "I lost my grandmother to cancer, and I hope my work can spare someone else’s loved one from a similar loss."

Prestigious workshop with global experts

The "DLS-CCP4 Data Collection and Structure Solution Workshop," hosted by Diamond Light Source, offered Dr Jacobs an unparalleled opportunity to learn from leading experts in macromolecular crystallography. The workshop covered critical skills such as growing protein and DNA crystals, preventing degradation during data collection, and processing complex data. Participants also gained insights directly from the engineers and scientists behind the facility’s cutting-edge software and synchrotron technology.

“It was an incredible opportunity to learn from some of the brightest minds in the field,” says Dr Jacobs. “Not only did I acquire new skills, but I also forged new collaborations with potential research partners who can help take my work to the next level.”

The David Blow Bursary, which enabled Dr Jacobs to attend this workshop, is awarded to  African researchers conducting impactful macromolecular crystallography studies.

"This training has been transformative," he adds. "It is a fantastic experience for any aspiring researcher, and I’m grateful to have had the chance to learn from these experts. Many researchers who attend workshops like this go on to work at the Diamond Light Source itself. I am eager to see where this training will take me."

A vision for the future

As Dr Jacobs continues his research, he remains driven by the hope that his work will lead to life-saving advancements in healthcare. “I want my research to provide hope and solutions for individuals battling cancer and bacterial infections,” he says.

His achievements exemplify the transformative power of education, research, and collaboration, and his story serves as an inspiration to aspiring researchers across Africa. 

News Archive

Death may come in adorable little packages
2015-03-23

The main host of the Lassa virus is the Natal Mulimammate mouse.

Photo: Supplied

Postdoctoral researcher, Abdon Atangana, of the Institute for Groundwater Studies at the university recently published an article online about the Lassa Haemorrhagic fever in the Natural Computing Applications Forum. In addition to the terminal transmissible sickness recognised as Ebola haemorrhagic fever, there is another strain called Lassa haemorrhagic fever.

The disease is classified under the arenaviridae virus family. The first outbreaks of the disease were observed in Nigeria, Liberia, Sierra Leone, and the Central African Republic. However, it was first described in 1969 in the town of Lassa, in Borno State, Nigeria.

The main host of the Lassa virus is the Natal Mulimammate mouse, an animal indigenous to most of Sub-Saharan Africa. The contamination in humans characteristically takes place through exposure to animal excrement through the respiratory or gastrointestinal tracts.

Mouthfuls of air containing tiny particle of infective material are understood to be the most noteworthy way of exposure. It is also possible to acquire the infection through broken skin or mucous membranes that are directly exposed to the infective material.

“The aim of my research was to propose a novel mathematical equation used to describe the spread of the illness amongst pregnant women in West Africa. To achieve this, I used my newly-proposed derivative with fractional order called beta-derivative. Since none of the commonly used integral transform could be used to derive the solution of the proposed model, I proposed a new integral transform called Atangana-Transform, and used it, together with some iterative technique, to derive the solution of the model.

“My numerical simulations show that the disease is as deadly amongst pregnant women as Ebola,” Abdon said.

Abdon’s research was submitted to one of Springer’s top-tier journals with an impact factor 1.78. The paper was accepted and published February 2015.

Read more about Abdon’s research.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept