Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
13 December 2024 | Story Martinette Brits | Photo Stephen Collett
Dr Francois Jacobs
Dr Francois Jacobs received his Doctor of Philosophy degree in Chemistry on Monday, 9 December.

Dr Francois Jacobs, a 30-year-old PhD graduate, has recently returned from an intensive training workshop in Harwell, Oxford, courtesy of the David Blow Bursary. This prestigious award recognises outstanding African researchers making significant contributions to macromolecular crystallography.

Dr Jacobs earned his Doctor of Philosophy degree in Chemistry on Monday, 9 December. While earning a PhD by the age of 30 was not part of his initial plan, he always aspired to pursue higher education. “From a young age, I had a strong desire to study at university. Once I got there, my ambition shifted towards obtaining a PhD,” he says, reflecting on the journey that led to this remarkable achievement.

Groundbreaking research on cancer and antibiotics

Dr Jacobs’ research addresses some of the most pressing health challenges of our time: cancer and antibiotic resistance. Using crystallography, he investigates the interactions between newly developed anticancer and antibacterial compounds and biological structures such as proteins at the atomic level. This work is vital in combating the growing threat of antibiotic-resistant bacterial infections and advancing cancer treatments.

"For me, it's about seeing humans thrive and reducing the suffering caused by illness," he explains. "I lost my grandmother to cancer, and I hope my work can spare someone else’s loved one from a similar loss."

Prestigious workshop with global experts

The "DLS-CCP4 Data Collection and Structure Solution Workshop," hosted by Diamond Light Source, offered Dr Jacobs an unparalleled opportunity to learn from leading experts in macromolecular crystallography. The workshop covered critical skills such as growing protein and DNA crystals, preventing degradation during data collection, and processing complex data. Participants also gained insights directly from the engineers and scientists behind the facility’s cutting-edge software and synchrotron technology.

“It was an incredible opportunity to learn from some of the brightest minds in the field,” says Dr Jacobs. “Not only did I acquire new skills, but I also forged new collaborations with potential research partners who can help take my work to the next level.”

The David Blow Bursary, which enabled Dr Jacobs to attend this workshop, is awarded to  African researchers conducting impactful macromolecular crystallography studies.

"This training has been transformative," he adds. "It is a fantastic experience for any aspiring researcher, and I’m grateful to have had the chance to learn from these experts. Many researchers who attend workshops like this go on to work at the Diamond Light Source itself. I am eager to see where this training will take me."

A vision for the future

As Dr Jacobs continues his research, he remains driven by the hope that his work will lead to life-saving advancements in healthcare. “I want my research to provide hope and solutions for individuals battling cancer and bacterial infections,” he says.

His achievements exemplify the transformative power of education, research, and collaboration, and his story serves as an inspiration to aspiring researchers across Africa. 

News Archive

UFS PhD student receives more than R5,8 million to take agricultural research to African farmers
2015-07-06

Prof Maryke Labuschagne and Bright Peprah. (Photo: Supplied)

Bright Peprah, a Plant Breeding PhD student from Ghana in the Department of Plant Sciences at the University of the Free State received an award from the competitive Program for Emerging Agricultural Research Leaders (PEARL) of the Bill and Melinda Gates Foundation (BMGF) for one of his projects.

From the more than 750 proposals for funding that were received from African researchers, only 19 received funding from PEARL. PEARL is an agricultural initiative by the BMGF to take agricultural research products to African farmers. It also aims at involving the youth and women in agriculture.

Peprah’s proposal to introgress beta carotene into farmer-preferred cassava landraces was part of the final 19 proposals funded. The project is being led by the Council for Scientific and Industrial Research (CSIR)Crops Research Institute (CRI), and has the International Institute of Tropical Agriculture (IITA) and the International Centre for Tropical Agriculture (CIAT) as international partners with Peprah as the principal investigator.


The development of nutrient-dense cassava cultivars needs attention to eliminate the ramifications of malnutrition among the poor in an inexpensive and more sustainable way.
Photo: Supplied

He received $473 000 (R5,8 million) for his project on the improvement of beta-carotene content in cassava.

Peprah decided on this project because the populations of underdeveloped and developing countries, such as Ghana, commonly suffer undernourishment and/or hidden hunger, predisposing them to diseases from micronutrients deficiencies. “Vitamin A deficiency constitutes an endemic public health problem which affects women and children largely,” he says.

“In Africa, cassava is widely consumed by the populace. Unfortunately, in these areas, malnutrition is endemic to a significant extent, partly due to the low micronutrients in this tuberous root crop, which is a major component of most household diets. It is for this reason that the development of nutrient- dense cassava cultivars needs much attention to eliminate the ramifications of malnutrition among the poor in an inexpensive and more sustainable way.

“To date we have selected top eight genotypes from germplasm collected from the International Institute of Tropical Agriculture (IITA) which are high in carotenoids and also poundable, a key trait to Ghanaian farmers. These eight genotypes have been planted at different locations in Ghana, and being evaluated by different stakeholders (consumers, researchers, producers, commercial farmers, processors, etc.). If found suitable, the genotypes will be released to farmers, which we hope will solve some of the micronutrient problems in Ghana.

“My projects seek to develop new cassava varieties that will have both high dry matter and beta carotene which has been reported to be negatively correlated (as one increase, the other decreases). The breeding method will be crossing varieties that are high in beta carotene with those with high dry matter, and checking the performance of the seedlings later. Developing such new varieties (yellow flesh cassava) will increase their adoption rate by Ghanaian farmers,” he said.

Prof Maryke Labuschagne, Professor in Plant Breeding in the Department Plant Sciences and Peprah’s study leader, said: “This project has the potential to alleviate vitamin A deficiency in the West African region, where this deficiency is rampant, causing blindness in many people, especially children."

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept