Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 July 2024 | Story André Damons | Photo André Damons
Research Chairs 2024
Prof Paul Oberholster, Dean: NAS; Dr Glen Taylor, Senior Director for the Directorate Research Development (DRD); Prof Vasu Reddy, Deputy Vice-Chancellor, Research and Internationalisation; and Prof Johan van Niekerk, Vice-Dean for Agriculture in the Faculty of Natural and Agricultural Sciences (NAS); are excited for the new ARC-DALLRD-UFS research chairs.

In a concerted effort to address the challenges and impact of climate change in Southern Africa, the University of the Free State (UFS) together with the Agricultural Research Council (ARC) and the Department of Agriculture, Land Reform and Rural Development (DALRRD) established four new research chairs within the Faculty of Natural and Agricultural Sciences (NAS).

The ARC-DALLRD-UFS research chairs, namely Climate Change and Agriculture, Innovative Agro-processing for Climate-smart Food System, Agriculture Risk Financing and Sustainable Livestock Production, falls under the umbrella of climate change and are part of the established centre of excellence of the ARC and DALRRD on Climate Smart Agriculture.

They will form part of two centres of excellence that the university is also in the process of establishing. The framework for these Agriculture Research Centres of Excellence involves several key components aimed at fostering innovation, collaboration, and impactful research in agriculture. In this case it is Climate Smart Agriculture, enabling them to play a pivotal role in advancing agriculture, enhancing productivity, sustainability, and resilience in the face of global challenges related to climate change.

Prof Johan van Niekerk, Vice-Dean for Agriculture for NAS, and Prof Sonja Venter, from the ARC, are the coordinators for the ARC-UFS-consortium. Joel Mamabolo from the DALRRD is the department’s representative and DALRRD manager in the consortium.

The purpose of the research chairs, he explains, is to conduct high-level research with an aspect of community impact as envisaged in the university’s vision 130. This is the UFS and NAS’s first steps towards creating industry chairs with negotiations between the UFS and the ARC-DALRRD currently taking place for further expansion of the chairs.

Improve research and food security

“The UFS has a long-standing relationship with the ARC and the parties came together to work together to improve research and food security in South Africa and Sub-Saharan Africa. The best way to do this, was by creating research chairs. The ARC saw the university’s expertise in agriculture which also contributed to the ARC establishing the chairs. Our expertise is of such a nature that it does not only influence the sector, but also makes a lasting difference,” says Prof Van Niekerk.

According to him, the ARC and the UFS will collectively manage the research chairs by appointing co-chair principal scientists for each of the chairs in order for the chairs to work together and share resources and expertise. The ARC-DALLRD-UFS research chairs will also work closely together within multidisciplinary research teams and complement each other and in doing so, create a value chain within the agriculture sector.

It will integrate various disciplines including agronomy, genetics, soil science, ecology, pathology economics, socioeconomics horticulture, animal sciences, food sciences and engineering to mention a few. This multidisciplinary approach will foster comprehensive research solutions and innovation at the intersection of different fields and will aim to contribute to sustainable food systems for the future.

The first two chairs; Climate Change and Agriculture, headed by Prof Linus Franke, Head of the UFS Department of Soil, Crop, and Climate Sciences, and the Innovative Agro-processing for Climate-smart Food System, which will be under Dr Alba du Toit, Senior Lecturer in the Department of Sustainable Food Systems and Development, officially started on 1 July 2024, while the remaining two chairs will begin operating in December. The ARC will soon confirm the co-leaders of the various chairs.

The Agriculture Risk Financing research chair will be shared between the Department of Agricultural Economics, within NAS, and the UFS Business School. The Sustainable Livestock Production chair will fall within Prof Frikkie Neser’s Department of Animal Science. To add more credibility, experience and expertise to the ARC-DALLRD-UFS research chairs, Prof Maryke Labuschagne, who is leading the NRF SARChI Chair in Diseases and Quality of Field Crops, has been appointed as mentor.

Prof Vasu Reddy, Deputy Vice-Chancellor, Research and Internationalisation, says: “These chairs mark an exciting opportunity to deepen our understanding of climate change aligned to our expertise in agriculture. The chairs offer us the opportunity to honour and support the leaders who will contribute in powerful ways to the vibrant intellectual life of the faculty, as well as the university, the ARC and DALRRD.

“The chairs also honour the donor whose financial support makes this form of recognition possible. At the UFS we are committed to engaging in global challenges but with a deliberate local focus, energy and drive. I am especially excited that these chairs demonstrate a commitment to the UFS focus on partnerships with industry, communities, the state and other academic and research institutions both nationally and around the world.”

Grateful for the ARC relationship

Through these chairs more collaborators and partners from other universities in the country and globally will be included in the partnership with the aim to bring together internationally renowned scientific experts that will collectively focus to address global challenges and enhance the development of more scientific capacity for the country.

The university, Prof Van Niekerk continues, is grateful for the cooperation and relationship with the ARC and its President and CEO, Dr Litha Magingxa and the executive management team, as well as the DALRRD DG, Mooketsa Ramasodi and the DDG for Agricultural Production, Biosecurity and Natural Resources Management, Dipepeneneng Serage for creating an environment within which the Universities and ARC can collectively contribute towards developing solutions with the DALRRD for key agricultural challenges of the country.

He expressed his gratitude to the Directorate Research Development (DRD) under the leadership of Dr Glen Taylor, for not only their support, but for bringing the parties together and negotiating with the ARC on their behalf. In this regard he wishes to thank Dr Petronella Chaminuka from the ARC as the acting Executive Manager: Research support and coordination for her support, guidance and leadership during the process.

Prof Van Niekerk also thanked Profs Francis Petersen, UFS Vice-Chancellor and Principal, Reddy, and Paul Oberholster, Dean of the Faculty of NAS, for creating the environment and rendering immense support for this programme from the UFS. 

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept