Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 July 2024 | Story André Damons | Photo André Damons
Research Chairs 2024
Prof Paul Oberholster, Dean: NAS; Dr Glen Taylor, Senior Director for the Directorate Research Development (DRD); Prof Vasu Reddy, Deputy Vice-Chancellor, Research and Internationalisation; and Prof Johan van Niekerk, Vice-Dean for Agriculture in the Faculty of Natural and Agricultural Sciences (NAS); are excited for the new ARC-DALLRD-UFS research chairs.

In a concerted effort to address the challenges and impact of climate change in Southern Africa, the University of the Free State (UFS) together with the Agricultural Research Council (ARC) and the Department of Agriculture, Land Reform and Rural Development (DALRRD) established four new research chairs within the Faculty of Natural and Agricultural Sciences (NAS).

The ARC-DALLRD-UFS research chairs, namely Climate Change and Agriculture, Innovative Agro-processing for Climate-smart Food System, Agriculture Risk Financing and Sustainable Livestock Production, falls under the umbrella of climate change and are part of the established centre of excellence of the ARC and DALRRD on Climate Smart Agriculture.

They will form part of two centres of excellence that the university is also in the process of establishing. The framework for these Agriculture Research Centres of Excellence involves several key components aimed at fostering innovation, collaboration, and impactful research in agriculture. In this case it is Climate Smart Agriculture, enabling them to play a pivotal role in advancing agriculture, enhancing productivity, sustainability, and resilience in the face of global challenges related to climate change.

Prof Johan van Niekerk, Vice-Dean for Agriculture for NAS, and Prof Sonja Venter, from the ARC, are the coordinators for the ARC-UFS-consortium. Joel Mamabolo from the DALRRD is the department’s representative and DALRRD manager in the consortium.

The purpose of the research chairs, he explains, is to conduct high-level research with an aspect of community impact as envisaged in the university’s vision 130. This is the UFS and NAS’s first steps towards creating industry chairs with negotiations between the UFS and the ARC-DALRRD currently taking place for further expansion of the chairs.

Improve research and food security

“The UFS has a long-standing relationship with the ARC and the parties came together to work together to improve research and food security in South Africa and Sub-Saharan Africa. The best way to do this, was by creating research chairs. The ARC saw the university’s expertise in agriculture which also contributed to the ARC establishing the chairs. Our expertise is of such a nature that it does not only influence the sector, but also makes a lasting difference,” says Prof Van Niekerk.

According to him, the ARC and the UFS will collectively manage the research chairs by appointing co-chair principal scientists for each of the chairs in order for the chairs to work together and share resources and expertise. The ARC-DALLRD-UFS research chairs will also work closely together within multidisciplinary research teams and complement each other and in doing so, create a value chain within the agriculture sector.

It will integrate various disciplines including agronomy, genetics, soil science, ecology, pathology economics, socioeconomics horticulture, animal sciences, food sciences and engineering to mention a few. This multidisciplinary approach will foster comprehensive research solutions and innovation at the intersection of different fields and will aim to contribute to sustainable food systems for the future.

The first two chairs; Climate Change and Agriculture, headed by Prof Linus Franke, Head of the UFS Department of Soil, Crop, and Climate Sciences, and the Innovative Agro-processing for Climate-smart Food System, which will be under Dr Alba du Toit, Senior Lecturer in the Department of Sustainable Food Systems and Development, officially started on 1 July 2024, while the remaining two chairs will begin operating in December. The ARC will soon confirm the co-leaders of the various chairs.

The Agriculture Risk Financing research chair will be shared between the Department of Agricultural Economics, within NAS, and the UFS Business School. The Sustainable Livestock Production chair will fall within Prof Frikkie Neser’s Department of Animal Science. To add more credibility, experience and expertise to the ARC-DALLRD-UFS research chairs, Prof Maryke Labuschagne, who is leading the NRF SARChI Chair in Diseases and Quality of Field Crops, has been appointed as mentor.

Prof Vasu Reddy, Deputy Vice-Chancellor, Research and Internationalisation, says: “These chairs mark an exciting opportunity to deepen our understanding of climate change aligned to our expertise in agriculture. The chairs offer us the opportunity to honour and support the leaders who will contribute in powerful ways to the vibrant intellectual life of the faculty, as well as the university, the ARC and DALRRD.

“The chairs also honour the donor whose financial support makes this form of recognition possible. At the UFS we are committed to engaging in global challenges but with a deliberate local focus, energy and drive. I am especially excited that these chairs demonstrate a commitment to the UFS focus on partnerships with industry, communities, the state and other academic and research institutions both nationally and around the world.”

Grateful for the ARC relationship

Through these chairs more collaborators and partners from other universities in the country and globally will be included in the partnership with the aim to bring together internationally renowned scientific experts that will collectively focus to address global challenges and enhance the development of more scientific capacity for the country.

The university, Prof Van Niekerk continues, is grateful for the cooperation and relationship with the ARC and its President and CEO, Dr Litha Magingxa and the executive management team, as well as the DALRRD DG, Mooketsa Ramasodi and the DDG for Agricultural Production, Biosecurity and Natural Resources Management, Dipepeneneng Serage for creating an environment within which the Universities and ARC can collectively contribute towards developing solutions with the DALRRD for key agricultural challenges of the country.

He expressed his gratitude to the Directorate Research Development (DRD) under the leadership of Dr Glen Taylor, for not only their support, but for bringing the parties together and negotiating with the ARC on their behalf. In this regard he wishes to thank Dr Petronella Chaminuka from the ARC as the acting Executive Manager: Research support and coordination for her support, guidance and leadership during the process.

Prof Van Niekerk also thanked Profs Francis Petersen, UFS Vice-Chancellor and Principal, Reddy, and Paul Oberholster, Dean of the Faculty of NAS, for creating the environment and rendering immense support for this programme from the UFS. 

News Archive

Link between champagne bubbles and the UFS?
2012-11-16

Prof. Lodewyk Kock with an example of a front page of the publication FEMS Yeast Research, as adapted by F. Belliard, FEMS Central Office.
Photo: Leatitia Pienaar
15 November 2012

What is the link between the bubbles in champagne and breakthrough research being done at the Mayo Clinic in America? Nano research being done at our university.

Prof. Lodewyk Kock of Biotechnology says a human being consists of millions of minute cells that are invisible to the eye. The nano technology team at the UFS have developed a technique that allows researchers to look into such a cell, as well as other microorganisms. In this way, they can get an idea of what the cell’s “insides” look like.

The UFS team – consisting of Profs. Kock, Hendrik Swart (Physics), Pieter van Wyk (Centre for Microscopy), as well as Dr Chantel Swart (Biotechnology), Dr Carlien Pohl (Biotechnology) and Liza Coetsee (Physics) – were amazed to see that the inside of cells consist of a maze of small tunnels or blisters. Each tunnel is about 100 and more nanometres in diameter – about one ten thousandth of a millimetre – that weaves through the cells in a maze.

It was also found that these tunnels are the “lungs” of the cells. Academics doing research on yeast have had to sit up and take notice of the research being done at the UFS – to the extent that these “lungs” will appear on the front page of the highly acclaimed FEMS Yeast Research for all of 2013.

The Mayo Clinic, in particular, now wants to work with the UFS to study cancer cells in more detail in order to fight this disease, says Prof. Kock. The National Cancer Institute of America has also shown interest. This new nano technology for biology can assist in the study and development of nano medicine that can be used in the treatment of cancer and other life threatening diseases. Nano medicine uses nano metal participles that are up to one billionth of a metre in size.

Prof. Kock says laboratory tests indicate that nano medicine can improve the efficacy of anti-cancer medicine, which makes the treatment less toxic. “According to the Mayo Clinic team, nano particles are considered as a gold cartridge which is being fired directly at a cancer tumour. This is compared to fine shot that spreads through the body and also attacks healthy cells.”

“This accuracy implies that the chemotherapy dose can be lowered with fewer side effects. The Mayo Clinic found that one-tenth of the normal dosage is more effective against pancreas cancer in this way than the full dosage with a linkage to nano particles. According to the clinic, this nano medicine could also delay the spread of cancer,” says Prof. Kock.

The nano particles are used as messengers that convey anti-cancer treatment to cancer cells, where it then selectively kills the cancer cells. The transport and transfer of these medicines with regard to gold nano particles can be traced with the UFS’s nano technology to collect more information, especially where it works on the cell.

“With the new nano technology of the UFS, it is possible to do nano surgery on the cells by slicing the cells in nanometre thin slices while the working of the nano medicine is studied. In this way, it can be established if the nano medicine penetrates the cells or if it is only associated with the tiny tunnels,” says Prof. Kock.

And in champagne the small “lungs” are responsible for the bubbles. The same applies to beer and with this discovery a whole new reach field opens for scientists.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept