Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 July 2024 | Story André Damons | Photo André Damons
Research Chairs 2024
Prof Paul Oberholster, Dean: NAS; Dr Glen Taylor, Senior Director for the Directorate Research Development (DRD); Prof Vasu Reddy, Deputy Vice-Chancellor, Research and Internationalisation; and Prof Johan van Niekerk, Vice-Dean for Agriculture in the Faculty of Natural and Agricultural Sciences (NAS); are excited for the new ARC-DALLRD-UFS research chairs.

In a concerted effort to address the challenges and impact of climate change in Southern Africa, the University of the Free State (UFS) together with the Agricultural Research Council (ARC) and the Department of Agriculture, Land Reform and Rural Development (DALRRD) established four new research chairs within the Faculty of Natural and Agricultural Sciences (NAS).

The ARC-DALLRD-UFS research chairs, namely Climate Change and Agriculture, Innovative Agro-processing for Climate-smart Food System, Agriculture Risk Financing and Sustainable Livestock Production, falls under the umbrella of climate change and are part of the established centre of excellence of the ARC and DALRRD on Climate Smart Agriculture.

They will form part of two centres of excellence that the university is also in the process of establishing. The framework for these Agriculture Research Centres of Excellence involves several key components aimed at fostering innovation, collaboration, and impactful research in agriculture. In this case it is Climate Smart Agriculture, enabling them to play a pivotal role in advancing agriculture, enhancing productivity, sustainability, and resilience in the face of global challenges related to climate change.

Prof Johan van Niekerk, Vice-Dean for Agriculture for NAS, and Prof Sonja Venter, from the ARC, are the coordinators for the ARC-UFS-consortium. Joel Mamabolo from the DALRRD is the department’s representative and DALRRD manager in the consortium.

The purpose of the research chairs, he explains, is to conduct high-level research with an aspect of community impact as envisaged in the university’s vision 130. This is the UFS and NAS’s first steps towards creating industry chairs with negotiations between the UFS and the ARC-DALRRD currently taking place for further expansion of the chairs.

Improve research and food security

“The UFS has a long-standing relationship with the ARC and the parties came together to work together to improve research and food security in South Africa and Sub-Saharan Africa. The best way to do this, was by creating research chairs. The ARC saw the university’s expertise in agriculture which also contributed to the ARC establishing the chairs. Our expertise is of such a nature that it does not only influence the sector, but also makes a lasting difference,” says Prof Van Niekerk.

According to him, the ARC and the UFS will collectively manage the research chairs by appointing co-chair principal scientists for each of the chairs in order for the chairs to work together and share resources and expertise. The ARC-DALLRD-UFS research chairs will also work closely together within multidisciplinary research teams and complement each other and in doing so, create a value chain within the agriculture sector.

It will integrate various disciplines including agronomy, genetics, soil science, ecology, pathology economics, socioeconomics horticulture, animal sciences, food sciences and engineering to mention a few. This multidisciplinary approach will foster comprehensive research solutions and innovation at the intersection of different fields and will aim to contribute to sustainable food systems for the future.

The first two chairs; Climate Change and Agriculture, headed by Prof Linus Franke, Head of the UFS Department of Soil, Crop, and Climate Sciences, and the Innovative Agro-processing for Climate-smart Food System, which will be under Dr Alba du Toit, Senior Lecturer in the Department of Sustainable Food Systems and Development, officially started on 1 July 2024, while the remaining two chairs will begin operating in December. The ARC will soon confirm the co-leaders of the various chairs.

The Agriculture Risk Financing research chair will be shared between the Department of Agricultural Economics, within NAS, and the UFS Business School. The Sustainable Livestock Production chair will fall within Prof Frikkie Neser’s Department of Animal Science. To add more credibility, experience and expertise to the ARC-DALLRD-UFS research chairs, Prof Maryke Labuschagne, who is leading the NRF SARChI Chair in Diseases and Quality of Field Crops, has been appointed as mentor.

Prof Vasu Reddy, Deputy Vice-Chancellor, Research and Internationalisation, says: “These chairs mark an exciting opportunity to deepen our understanding of climate change aligned to our expertise in agriculture. The chairs offer us the opportunity to honour and support the leaders who will contribute in powerful ways to the vibrant intellectual life of the faculty, as well as the university, the ARC and DALRRD.

“The chairs also honour the donor whose financial support makes this form of recognition possible. At the UFS we are committed to engaging in global challenges but with a deliberate local focus, energy and drive. I am especially excited that these chairs demonstrate a commitment to the UFS focus on partnerships with industry, communities, the state and other academic and research institutions both nationally and around the world.”

Grateful for the ARC relationship

Through these chairs more collaborators and partners from other universities in the country and globally will be included in the partnership with the aim to bring together internationally renowned scientific experts that will collectively focus to address global challenges and enhance the development of more scientific capacity for the country.

The university, Prof Van Niekerk continues, is grateful for the cooperation and relationship with the ARC and its President and CEO, Dr Litha Magingxa and the executive management team, as well as the DALRRD DG, Mooketsa Ramasodi and the DDG for Agricultural Production, Biosecurity and Natural Resources Management, Dipepeneneng Serage for creating an environment within which the Universities and ARC can collectively contribute towards developing solutions with the DALRRD for key agricultural challenges of the country.

He expressed his gratitude to the Directorate Research Development (DRD) under the leadership of Dr Glen Taylor, for not only their support, but for bringing the parties together and negotiating with the ARC on their behalf. In this regard he wishes to thank Dr Petronella Chaminuka from the ARC as the acting Executive Manager: Research support and coordination for her support, guidance and leadership during the process.

Prof Van Niekerk also thanked Profs Francis Petersen, UFS Vice-Chancellor and Principal, Reddy, and Paul Oberholster, Dean of the Faculty of NAS, for creating the environment and rendering immense support for this programme from the UFS. 

News Archive

Research contributes to improving quality of life for cancer patients
2016-11-21

Description: Inorganic Chemistry supervisors  Tags: Inorganic Chemistry supervisors

Inorganic Chemistry supervisors in the Radiopharmacy
Laboratory during the preparation of a typical complex
mixture to see how fast it reacts. Here are, from the left,
front: Dr Marietjie Schutte-Smith, Dr Alice Brink
(both scholars from the UFS Prestige
Scholar Programme), and Dr Truidie Venter (all three
are Thuthuka-funded researchers).
Back: Prof André Roodt and Dr Johan Venter.
Photo: Supplied

Imagine that you have been diagnosed with bone cancer and only have six months to live. You are in a wheelchair because the pain in your legs is so immense that you can’t walk anymore – similar to a mechanism eating your bones from the inside.

You are lucky though, since you could be injected with a drug to control the pain so effective that you will be able to get out of the wheelchair within a day-and-a-half and be able to walk again. Real-life incidents like these provide intense job satisfaction to Prof André Roodt, Head of Inorganic Chemistry at the University of the Free State (UFS). The research, which is conducted by the Inorganic Group at the UFS, contributes greatly to the availability of pain therapy that does not involve drugs, but improves the quality of life for cancer patients.

The research conducted by the Inorganic Group under the leadership of Prof Roodt, plays a major role in the clever design of model medicines to better detect and treat cancer.

The Department of Chemistry is one of approximately 10 institutions worldwide that conducts research on chemical mechanisms to identify and control cancer. “The fact that we are able to cooperate with the Departments of Nuclear Medicine and Medical Physics at the UFS, the Animal Research Centre, and other collaborators in South Africa and abroad, but especially the methodology we utilise to conduct research (studying the chemical manner in which drugs are absorbed in cancer as well as the time involved), enhances the possibility of making a contribution to cancer research,” says Prof Roodt.

Technique to detect cancer spots on bone
According to the professor, there are various ways of detecting cancer in the body. Cancer can, inter alia, be identified by analysing blood, X-rays (external) or through an internal technique where the patient is injected with a radioactive isotope.

Prof Roodt explains: “The doctor suspects that the patient has bone cancer and injects the person with a drug consisting of an isotope (only emits X-rays and does no damage to tissue) that is connected to a phosphonate (similar to those used for osteoporosis). Once the drug is injected, the isotope (Technetium-99m) moves to the spot on the bone where the cancer is located. The gamma rays in the isotope illuminate the area and the doctor can see exactly where treatment should be applied. The Technetium-99m has the same intensity gamma rays as normal X-rays and therefore operates the same as an internal X-ray supply.” With this technique, the doctor can see where the cancer spots are within a few hours.

The same technique can be used to identify inactive parts of the brain in Alzheimer patients, as well as areas of the heart where there is no blood supply or where the heart muscle is dead.

Therapeutic irradiation of cancer
For the treatment of pain connected with cancer, the isotope Rhenium-186 is injected. Similar to the manner in which the Technetium-99m phosphonate compound is ingested into the body, the Rhenium-186 phosphonate travels to the cancer spots. Patients thus receive therapeutic irradiation – a technique known as palliative therapy, which is excellent for treating pain. A dosage of this therapy usually lasts for about two months.

The therapy is, however, patient specific. The dosages should correspond with the occurrence and size of cancer spots in the patient’s body. First, the location of the cancer will be determined by means of a technetium scan. After that, the size of the area where the cancer occurs has to be determined. The dosage for addressing total pain distribution will be calculated according to these results.

Technique to detect cancer spots on soft tissue
Another technique to detect cancer as spots on bone or in soft tissue and organs throughout the body is by utilising a different type of irradiation, a so-called PET isotope. The Fluor-18 isotope is currently used widely, and in Pretoria a machine called a cyclotron was produced by Dr Gerdus Kemp, who is a former PhD graduate from the Inorganic Research Group. The F-18 is then hidden within a glucose molecule and a patient will be injected with the drug after being tranquillised and after the metabolism has been lowered considerably. The glucose, which is the ‘food' that cancer needs to grow, will then travel directly to the cancer area and the specific area where the cancer is located will thus be traced and ‘illuminated’ by the Fluor-18, which emits its own 'X-rays'.

In the late 80s, Prof Roodt did his own postdoctoral study on this research in the US. He started collaborating with the Department of Nuclear Medicine at the UFS in the early 90s, when he initiated testing for this research.

Through their research of more than 15 years, the Inorganic Group in the Department of Chemistry has made a major contribution to cancer research. Research on mechanisms for the detection of cancer, by designing new clever chemical agents, and the chemical ways in which these agents are taken up in the body, especially contributes to the development in terms of cancer therapy and imaging, and has been used by a number of hospitals in South Africa.

The future holds great promise
Prof Roodt and his team are already working on a bilateral study between the UFS and Kenya. It involves the linking of radio isotopes, as mentioned above, to known natural products (such as rooibos tea), which possess anti-cancer qualities.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept