Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 June 2024 | Story Martinette Brits | Photo Carine van Zyl
OVK Innovation Competition Gala Event 2024
The prize winners at the gala evening of the OVK Innovation Competition on 13 June 2024. From the left, in front: Emily Segame, Sophia Mekhoe, Sarah Lenong, Maserame Sebonyane, Ntabiseng Ndabeni. At the back: Elizabeth Mnwana, Carlize van Zyl (winner of the competition), Carien Vorster, Jana Vermaas, Doretha Jacobs, and Nelly Olayi.

The University of the Free State (UFS) Wool Wise Community Project was recognised for its innovative use of wool, receiving accolades at the OVK Innovation Competition held in conjunction with the Karoo Winter Wool Festival in Middelburg from 13–16 June 2024.According to Carien Vorster, project manager from the Department of Sustainable Food Systems and Development, participants were tasked with crafting practical items from wool. Their creativity shone through in their design of a lampshade, earning them second place. Doretha Jacobs, a lecturer in the Department of Sustainable Food Systems and Development, focused on making felt from Dorper fibre, noting that while Dorper sheep are primarily bred for meat, they sought to repurpose fibres that would otherwise be discarded.

The team achieved third place with their cushion, featuring a front made entirely of merino wool felt and a back crafted from upholstery fabric. “Each cushion contains a 100% duck feather inner, and their uniqueness lies in the hand-dyed wool and hand-placed designs on each felt piece,” explains Vorster.

Other notable entries from different teams included a duvet inner, shoe insoles, and oven gloves. The top prize went to a hand-felted coat.

Community project empowers local women in wool craft

The UFS Wool Wise Community Project originated as a spin-off from the Regional Universities Forum for Capacity Building (Ruforum) project, initiated in 2019 by the UFS Department for Sustainable Food Systems and Development.

According to Vorster, the Ruforum project encompasses various components such as research, farmer support, and community development, with a particular emphasis on community upliftment programmes. "Since 2019, we have conducted numerous wool workshops and training sessions where local women have participated to learn about wool processing," she explains.

"From these events, we identified women who are now integral to our programme. Their skills range from sewing, felt making, and hand embroidery, to knitting."

The project features eight women who create diverse products from scratch: Elizabeth Mnwana, Emily Segame, Georgina Collins, Maserame Sebonyane, Nelly Olayi, Sarah Lenong, Sophia Mekhoe, and Ntabiseng Ndabeni.

She emphasises that the project also manufactures conference bags for various events and stands as one of UFS's most successful community initiatives. "Ultimately, this project has the potential to become self-sustaining, with proceeds supporting the salaries of the eight women," Vorster concludes.

Competition boosts visibility and market reach

Participating in initiatives like the OVK Innovation Competition motivates them to stay current and benchmark their efforts against other businesses or individuals involved in felt product creation.

"Winning a competition can also significantly uplift team morale," remarks Vorster.

"Securing second and third place in this competition translates to increased visibility and marketing opportunities for us. This is crucial as we aim to expand our market reach and establish a sustainable income stream for the project," she concludes.

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept