Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 March 2024 | Story VALENTINO NDABA | Photo SUPPLIED
Prof Geo Quinot and with Ntando Ncamane
Prof Geo Quinot from Stellenbosch University, pictured with Ntando Ncamane, a Lecturer in the UFS Department of Mercantile Law.

The Department of Mercantile Law at the University of the Free State (UFS) recently spearheaded a Legal Education Colloquium, marking the genesis of a groundbreaking book project with the vision of revitalising legal education across South Africa. Attended by luminaries from academia, legal practitioners, and students, the event featured Professor Geo Quinot from Stellenbosch University, a distinguished figure renowned for his profound insights into legal education, as the keynote speaker.

Ntando Ncamane, a Lecturer in Mercantile Law, provided a comprehensive overview of the colloquium’s objectives, outcomes, and future trajectory. "The dynamic evolution of legal frameworks, notably the promulgation of the Constitution, statutes, and landmark cases, has necessitated a reformation in South African legal education,"  Ncamane remarked. He underscored the pivotal role of digital transformation, particularly in the context of the pandemic, and emphasised the joint commitment of regulatory bodies and academic institutions towards fostering an ethos of engaged scholarship. The colloquium served as a platform to dissect and explore transformative trends, inviting stakeholders to deliberate on novel perspectives and navigate emerging challenges in legal education.

Insights from Prof Geo Quinot and eminent experts

Reflecting on the invaluable insights garnered from deliberations, Ncamane highlighted Professor Quinot's keynote address, which advocated for a reimagining of collaborative endeavours, particularly involving students. Discussions spanned an array of topics including innovative methodologies, enhancing assessment frameworks, leveraging digital platforms for education, integrating competition law into curricula, promoting engaged scholarship, nurturing emotional intelligence among students, and addressing complexities within modules such as civil procedure. Stimulating dialogues on decoloniality, decolonisation, and ubuntu ethos also permeated the discourse. 

The forthcoming book, a culmination of the colloquium, will traverse themes encompassing Digital Education, Student Engagement, and Decolonisation. Ncamane elucidated, "Contributors will be aligned with one of the themes based on the relevance of their contributions…A call for papers was issued, eliciting abstract submissions from prospective contributors."

Scholars hailing from diverse academic institutions including the UFS, University of the Witwatersrand, University of Limpopo, University of Fort Hare, North-West University, Varsity College, and Stellenbosch University, have been enlisted for participation. Each chapter will undergo a peer review process, ensuring scholarly rigour and academic excellence. 

Role and impact of the book

Articulating the envisioned role of the book, Ncamane underscored its potential to reshape legal education and curriculum development. He said, "The book offers key approaches that can be adopted by legal scholars to improve teaching methods, ultimately benefiting students, academics, and society at large."

With regards to timelines, Ncamane indicated that the publication is slated for release in late 2024 or early 2025, contingent upon the duration of the blind review process and editorial refinement. The Legal Education Colloquium and its ensuing book project exemplify a concerted endeavour to address the evolving imperatives of legal education, foster scholarly discourse, and contribute meaningfully to the enhancement of legal praxis in South Africa.

News Archive

UFS researcher engineers metal surfaces
2015-03-03

Shaun Cronjé, a PhD student, in a surface characterisation laboratory at the UFS.

It is well known that the surface of a component is much more vulnerable to damage than the interior, and that surface-originated degradation such as wear, corrosion, and fracture will eventually destroy the component.

“Engineering the surface, based on scientific knowledge, is essential to control these damaging processes. It also creates electronic and geometric structures on the surface which opens up a world of new devices, especially considering the properties on the nano-length scale,” said Prof Wiets Roos from the Department of Physics at the University of the Free State (UFS).

At elevated temperatures, atoms are more mobile and can migrate to grain boundaries and surfaces, which have a major influence on material properties. The redistribution of solute atoms between the surface and the bulk of the material is known as segregation. Knowing the behaviour of segregation at the surface/environment interface can be very useful in the development of new materials. As an example materials can be improved higher efficiency and lower fuel consumption, thus reducing environmental pollution.

The main aims of Prof Roos’s research are to understand surface segregation, use it as a tool, and contribute to the various surface engineering fields.

The surface characterisation laboratories at the UFS are well equipped to do high temperature segregation measurements, and have already proven a success, not only in the ability to prepare the specimens for characterisation, but also in developing models and procedures to quantify the segregation parameters.

The most recent results have demonstrated the importance of taking evaporation into account during quantification.” This has laid the foundation for future studies by installing the necessary hardware in a surface characterisation spectrometer, establishing experimental protocols, and improving an existing model (developed in this laboratory) for simulating segregation profiles,” said Prof Roos.

Segregation parameters allow the researcher to predict and utilise the surface concentration behaviour as a function of temperature and time. “This not only contributes to fields involving corrosion, oxidation, sintering, wear, chemical poisoning, powder metallurgy, and lubrication but adds to the development of self-healing devices,” said Prof Roos.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept