Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 May 2024 | Story Anthony Mthembu | Photo Supplied
Fine Arts Department visit 2024
Prof Magdalena Sobon from Poland and Michael Jackson Blebo from Ghana shared their expertise with staff and students during their visit to the Department of Fine Arts at the University of the Free State.

In a concerted effort to solidify its identity in South Africa and abroad, the Department of Fine Arts at the University of the Free State (UFS) recently played host to two distinguished artists: Prof Magdalena Sobon from the Wladyslaw Strzeminski Academy of Fine Arts in Lodz, and the Ghanaian multidisciplinary artist, Michael Jackson Blebo.

Dr Adelheid Von Maltitz, Senior Lecturer in the Department of Fine Arts at UFS, lauded the visits, held between 19 and 29 March 2024, as an enriching learning experience for the faculty and students within the department.

The visit highlights

During their visit to UFS, Prof Sobon and Blebo actively engaged with the department’s staff and students. Prof Sobon, an acknowledged paper-making artist, conducted a comprehensive two-day workshop, imparting extensive knowledge in this craft. As a direct outcome of this workshop, the department has procured the requisite equipment and materials, enriching the students’ capabilities in this medium. Blebo on the other hand, conducted a demonstration on clay bust modelling and both artists participated in critique sessions with the fourth-year students. Dr Von Maltitz underlined the significance of Blebo’s African heritage, noting, ‘’For our students to interact with a young, accomplished artist of his calibre is of benefit to them in terms of how they may envision their art careers.’’ Of particular note were Prof Sobon’s interactions with the students, wherein she shared her own artistic practices from her student years during her lectures.

In addition to their engagements with the students, Prof Sobon and Blebo also had the opportunity to present their research to second-year sculpture students at the Richmond Land Art Project, an off-campus initiative fostering art creation centred on socio-economic and other pertinent issues.

Future collaborations

Dr Von Maltitz emphasised the importance of maintaining ties with these eminent artists for the department’s growth and global outreach. Prof Sobon’s visit has paved the way for two department members to visit the Wladyslaw Strzeminski Academy of Fine Arts in Lodz in the near future. ‘’These individuals will get an opportunity to learn about studio setups and network with fellow academics, creative researchers, and artists,’’ stated Dr Von Maltitz. She hailed the visit by the two artists as both stimulating and fruitful, particularly for the students.

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept